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Theory

spin 1/2 particle has interaction with electric (magnetic) field:

H = −d E · S

S
→ L =

−id
2
ψ̄σµνγ5ψFµν

mdm odd under P

edm odd under T

both even under CPT

hν = 2µB ± 2dE

d =
h∆ν

4E

measure with ultra-cold
neutrons in E , B fields
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Status of experiments

Current value(limit) dn = 0.2(1.5)(0.7)10−26e cm
(2.9× 10−26) (Sussex-RAL-ILL, 2006)

New UCN experiments

PSI (CH): taking data, ∼ 1× 10−26 e cm by 2016
SNS (ORNL): goal 3-5×10−28 e cm
. . .

New pEDM storage-ring experiment in development

USA/COSY/KAST/. . . (1× 10−29 e cm → 1× 10−30 e cm)

(see talks at Lepton Moments 2014, Cape Cod, by Philipp Schmidt-Wellenburg, Steve Clayton, and Yannis

Semertzidis, http://g2pc1.bu.edu/lept14/program.html)
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The electric dipole moment of the nucleon in the SM

Weak interactions: CKM quark mixing matrix (CP violation)

three loops
4-5 orders smaller than current bound

Topological charge (θ parameter) in QCD

In principle θ is O(1), but in Nature θ � 1, “Strong CP
problem”

quark electric and chromo-electric edms (higher dimension)
appear in BSM theories (see talk by Boram Yoon tomorrow)
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θ term in QCD

SQCD = −S(Aµ)− iθ

∫
d4x

g2

32π2
tr
[
G (x)G̃ (x)

]

= −S(Aµ)− iθQ

where Q is the (integer) topological charge, or winding number of
the gauge field configuration {Aµ(x)}

θ term renormalizable, Lorentz and gauge invariant but CP (T) odd

G (x)G̃ (x) = 1/2εµνδρG δρGµν ∼ E · B
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θ term in QCD

If the quarks were massless, the θ term could be removed from the
action by doing chiral rotations on the quark fields,

ψ(x) → (1 + iα(x)γ5)ψ(x)

because the measure in the path integral is *not* invariant under
this change of variables,

Dψ̄Dψ → exp

[
i

∫
d4xα(x)

g2

8π2
G (x)G̃ (x)

]
Dψ̄Dψ

so α(x) = θ/2 kills the θ term

Tom Blum (UCONN / RBRC) Taku Izubuchi (BNL/RBRC) Calculation of the D=4 contribution to the nEDM using lattice QCD



Introduction Configuration ensemble and measurement details Preliminary results Summary/Outlook

θ term in QCD

Of course, quarks are not massless, so α(x) = θ/2 may kill the θ
term but makes quark masses complex

Convention is to define

θ̄ = θ + ArgDetMq

as the physical value, and if quark masses are real, θ̄ = θ
So for us, θ̄ is coefficient of iQ term in the action

Exp. then requires θ̄ <∼ 10−10 which is Strong CP problem
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The electric dipole moment of the nucleon

Let nucleon interact with external field in θ 6= 0 vacuum

〈N|Jµ|N〉θ = ūθ(~p′, s ′)
(
F1(q2)γµ +

iF2(q2)

2mN
σµνqν

+
F3(q2)

2mN
γ5σµνqν

)
uθ(~p, s)

q = p′ − p

q → 0 limit yields dipole moment(s)

In lattice gauge theory, compute correlation functions of fields in
Euclidean space-time,

Gµ(t ′, t) = 〈χN(t ′, ~p′) Jµ(t, q)χ†N(0, ~p)〉.
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The electric dipole moment of the nucleon

Project onto ground states by separating interpolating fields and
currents in Euclidean time (LSZ analog)

Gµ(t ′, t) =
∑

s,s′

〈0|χN |p′, s ′〉〈p′, s ′|Jµ|p, s〉〈p, s|χ†N |0〉
e−E

′(t′−t)e−Et

2E 2E ′
+ . . .

= Gµ(q)× f (t, t ′,E ,E ′) + . . . ,

Appropriate projectors give form factors (e.g . in the CP even case)

tr
i

4

1 + γt

2
γyγx G x(q2) = py m(F1(q2) + F2(q2)) = py mGM(q2)

tr
i

4

1 + γt

2
γyγx G y (q2) = −px m(F1(q2) + F2(q2)) = −px mGM(q2)

tr
1

4

1 + γt

2
G t(q2) = m (E + m)

(
F1(q2)− q2

(2m)2
F2(q2)

)

= m (E + m)GE (q2)
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The electric dipole moment of the nucleon

In the CP broken vacuum, we have (for example)

trPxy G t(q2) = ipz

(
αmF1(q2) + α

E + 3m

2
F2(q2) +

E + m

2
F3(q2)

)

+ O(θ2)

where the mixing of even and odd FF comes from the nucleon
spinors, which are no longer eigenstates of CP (Pospelov, Ritz 1998)

∑

s,s′
us′,θ(~p)ūs,θ(~p) = E (~p)γt − i~γ · ~p + me2iαγ5 ,

≈ E (~p)γt − i~γ · ~p + m(1 + 2iαγ5)

where uθ = exp iαγ5u.

Need to subtract α-terms to get physical edm (F3)
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Computing with θ 6= 0

The θ 6= 0 action, being complex, is difficult to simulate with
conventional lattice methods. However, this problem can be
avoided by working in the small θ limit,

〈O〉θ =
1

Z (θ)

∫
DAµDψ̄DψO e−S(Aµ)−iθ

∫
d4x g2

32π2 tr[G(x)G̃(x)]

≈ 1

Z (0)

∫
DAµDψ̄Dψ(1− iθQ)O e−S(Aµ)

= 〈O〉 − iθ〈QO〉

Generate usual CP-even gauge field ensemble, re-weight with
topological charge to get CP-odd part of correlation function
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2+1f DWF + Iwasaki (DSDR) gluons

Ensembles generated by the RBC/UKQCD Collaboration

a−1 = 1.73 GeV (0.114
fm)

lattice size 243 × 64× 16

V = (2.7 fm)3

ml = 0.005, 0.01,
ms = 0.04,
mres = 0.00316

mπ = 330, 400 MeV

measurements on ∼ 750
configs for each mass,
separated by 10 MC time
units

a−1 = 1.37 GeV (0.144
fm)

lattice size 323 × 64× 32

V = (4.6 fm)3

ml = 0.001, ms = 0.04,
mres = 0.0018

mπ = 170 MeV

measurements on 39
configurations, separated
by 20 MC time units
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Measurement details

330, 400 MeV Pions

gaussian-smeared quark sources, APE smeared links

(zero momentum) sequential propagators at the sink

spatial momentum inserted at the operator (up to 4 units)

Use all-mode-averaging (AMA) with

400 (180) exact low-modes for 0.005 (0.01)
(Implicitly-restarted Lanczos)
“sloppy” conjugate gradient stopping residual 10−4

NG = 23 × 4 = 32 approximate measurements / config
1 exact measurement (10−8 stopping residual)

Tom Blum (UCONN / RBRC) Taku Izubuchi (BNL/RBRC) Calculation of the D=4 contribution to the nEDM using lattice QCD



Introduction Configuration ensemble and measurement details Preliminary results Summary/Outlook

Measurement details

170 MeV pion

gaussian-smeared quark sources, APE smeared links

(zero momentum) sequential propagators at the sink

spatial momentum inserted at the operator (up to 4 units)

Use all-mode-averaging (AMA) with

1000 exact low-modes (Implicitly-restarted Lanczos)
“sloppy” conjugate gradient: 125 iterations
NG = 2× 23 × 7 = 116 approximate measurements / config
4 exact measurements/config (10−8 stopping residual)
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CP even Sach’s form factors
(different source-sink separations, 8 and 12 time units)
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FIG. 3: The time slice of electromagnetic moment of proton and neutron with Sach form factor

with ∆t = 12 (left) and ∆t = 9 (right).
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CP even Sach’s form factors (ml = 0.005, mπ = 330 MeV)
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FIG. 6: The q2 dependence of electric and magnetic moment with ∆t = 1.4 fm (circle) and ∆t = 0.9

fm (square) in Iwasaki 243 at 0.33 GeV pion.

FQ has rather large fluctuation whose statistical error is more than 50%. This indicates that

the signal of F3 almost relies on the accuracy and stability of the three-point function at

θ-NLO FQ. Figure 9 shows the time-slice of F3/2mN . The plateau region around 4 ≤ at ≤ 8

is supposed to be a signal of EDM form factor. In order to identity that this plateau is

“true” signal of EDM form factor, we compare the different spin-channel using other current

direction. From Figure 9, the EDM form factor obtained with different EM current direction

is consistent in the plateau region in both neutron and proton at all different momenta, and

the µ = z data has larger statistical noise than µ = t data. We also notice that the µ = z

result may suffer rather large contamination from excited state, since the region of plateau

for ∆t = 8 is more unclear than µ = t result, and thus in the following analysis we use only

the µ = t data.

To investigate the effect of excited state contamination, we plot the EDM form factor

with ∆ = 1.4 fm and ∆t = 0.9 fm in Figure 10. The small ∆t has even better signal than

20

stat errors
∼ 1-few%

Excited state effects
visible, but small
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CP even Sach’s form factors (ml = 0.001, mπ = 170 MeV)
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FIG. 7: Same as Figure 6 in DSDR 323 lattice at 0.17 GeV pion.

∆ = 1.4 fm, and these plateaus are consistent. Therefore one sees that the contamination

of excited state (for instance parity partner of nucleon) is almost negligible in this range.

In Figure 11 we also check the error scaling using the small statistics and reduced NG,

which is the number of source location of O(appx)
G in the AMA algorithm. We find that the

EDM form factor in small NG and Nconf are in good agreement with in full statistics, and

its statistical error is roughly scaled with the ratio of square root of the number of config-

urations. Furthermore comparing small NG to full statistics, we have a similar reduction

of the statistical errors, e.g. the second line in Figure 11 indicates the rate 51% in quarter

statistics (200 configs.) is close to ideal rate 50%. Furthermore, in the forth line, the rate

44% is slightly larger than ideal rate 1/
√
8 ≃ 35%. It turns out that the gauge configu-

rations we used do not show strong correlations between different trajectories and also, in

AMA, there is not large correlation between different source locations. Therefore our choice

of approximation and g ∈ G in AMA algorithm works well for the error reductions of EDM

form factor at both quark masses.

21

stat errors ∼ 1-few% here too! AMA is effective
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Topological Charge (330, 400 MeV pions)
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FIG. 1: Distribution of topological charge used in this simulation at sea light quark mass m = 0.005

(left) and m = 0.01 (right). We also draw the Gaussian distribution as the solid line.

local (smeared) sink, and at ∈ [6, 10] for αN in both local and smeared sink. As shown in

Figure 2, the results of effective mass plot for θ-NLO nucleon propagator has clear plateau

and its value is consistent with θ-LO nucleon propagator from at = 6 in both local and

smeared sink. We also notice that αN is constant value within 1-σ error even if the nucleon

operator has the finite momentum. This is in agreement with formulation in Eq.(6). From

below analysis αN measured by the local sink nucleon operator is employed in the subtraction

term in Eq.(13) and Eq.(14).

D. Electromagnetic form factor

First we show the EM moment Ge,m obtained by following the ordinal extraction proce-

dure Eq.(10) and Eq.(11). On this ensemble the results of (iso-)vector form factor using high

statistics with multi-source average was represented in [22], however using AMA techniques

explained in Section III we achieve more higher improvement of statistical error of these

observables. The precise measurement of EM form factor is also important for the EDM

calculation since as shown in Eq.(13) and (14) it depends on the precision of Ge,m (and also

αN) for the construction of subtraction term.

In Figure 3 we show the time-slice of the extracted EM form factor from the ratio rep-

resented in left-hand-side of Eq.(10) and Eq.(11), and also compare the result using short-

11

5Li Q
(deForcrand, etal)

99

TABLE XXXVIII: Topological charge and susceptibility. Themeasurement frequency, “meas. freq.”, and

“block size” are given in units of Monte Carlo time.

ml meas. freq. block size 〈Q〉 〈Q2〉 χ (GeV4)

0.005 5 50 0.49 (25) 28.6 (1.4) 0.000290 (14)

0.01 5 50 -0.22 (37) 45.2 (2.5) 0.000458 (25)

0.004 4 200 0.59 (42) 11.4 (1.1) 0.000148 (14)

0.006 4 200 -0.07 (64) 24.8 (4.3) 0.000322 (55)

0.008 4 400 0.64 (100) 27.9 (5.6) 0.000363 (72)
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FIG. 52: Monte Carlo time histories of the topological charge. The light sea quark mass increases from top

to bottom, (0.005 and 0.01, 243 (top two panels), and 0.004-0.008, 323). Data for the 243 ensembles up to

trajectory 5000 were reported originally in [1] and the results from the new ensembles are plotted in black.

Most of the data was generated using the RHMC II algorithm (red and black lines). The RHMC 0 (green

line) and RHMC I (blue line) algorithms were used for trajectories up to 1455 for theml = 0.01 ensemble.

The small gap in the top panel represents missing measurements which are irrelevant since observables are

always calculated starting from trajectory 1000.

ml = 0.005

ml = 0.01
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Topological Charge (170 MeV pion)

Charge distribution a bit sketchy!
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FIG. 1: Distribution of topological charge used in this simulation at light sea quark mass m = 0.005

(left) and m = 0.01 (right) in Iwasaki 243 lattice. The solid line represents the Gaussian distribution

function. 〈Qtop〉 is averaged value of topological charge at each ensemble.
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FIG. 2: Same as Figure 1 in DSDR 323 lattice.

P4. αN is obtained from Eq.(9). The fitting range of these observables is set to at ∈
[7, 12](at ∈ [6, 12]) for nucleon energy in local (smeared) sink, and at ∈ [6, 10] for αN in both

local and smeared sink. As shown in Figure 3, the results of effective mass plot of θ-NLO

nucleon propagator has clear plateau and its plateau value is consistent with nucleon energy

obtained from θ-LO nucleon propagator in both local and smeared sink. We also notice that

αN is constant value within 1-σ error even if the nucleon operator has the finite momentum.
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FIG. 1. Monte Carlo evolution of the average plaquette (top), topological charge (middle), and light-quark

pseudoscalar density (bottom) on theml = 0.001 (left) andml = 0.0042 (right) ensembles.
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FIG. 2. Topological charge distributions for theml = 0.001 (left) andml = 0.0042 (right) ensembles.

for a quantityY, whereȲ is the expectation value over the ensemble,σ2 its variance, and∆ is the

molecular dynamics time separation between measurements.The average in the second equation

is performed over the set of pairs of configurations separated by ∆ MD time units. In order to

correctly estimate the errors on the integrated autocorrelation time, we investigated two strategies:

1. At each fixed∆ we formed a bootstrap distribution to estimate the error on the mean〈...〉t

Used Full ensemble
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Mixing coefficient from odd/even 2pt function

effective nucleon mass mixing coefficient
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FIG. 2: Effective mass plot of nucleon propagator CG at θ-LO in Gaussian smeared sink and CQ
G,L

at θ-NLO in local and Gaussian sink respectively, at m = 0.005 (left) and m = 0.01 (right).

distance of time-separation ∆t between source-sink operator. In lattice calculation the

appropriate setting of ∆t is important to keep the balance of uncertainty against the com-

putational cost. As one has seen in Eq.(4), the “true” signal of form factor of the asymptotic

nucleon state is given as the plateau region in Figure 3 after taking the enough large separa-

tion ∆t, and the excited state contamination will be suppressed as exp(−(Eexcite−Egrand)∆t).

Although increasing ∆t enable us to reduce the systematic error due to unsuppressed ex-

cited state contamination, there appears relatively large statistical fluctuation because the

signal-to-noise ratio decreases like (noise) ∼ exp(−Egrand∆t). To identify the signal of form

factor and search the appropriate ∆t to discriminate the excited state contamination, we

make a comparison of two different ∆t, and observe the consistent plateau region. In left

panel of Figure 3 at transfer momentum from q2 = −0.2 to −0.7 GeV2, one observes the

clear plateau between 4 ≤ at ≤ 8 and also this is in good agreement with plateau in small

∆t case between 3 ≤ at ≤ 5 as shown in right panel (also see Figure 4). The fitting re-

sults obtained by using constant function are represented in Table III and IV, and the high

precise value of form factor is obtained as a few % precision for Gp
e, G

p
m and Gn

m, and also
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FIG. 11: The dependence of pion mass squared for αN obtained by using the different sink operator

and momenta.

Furthermore it is interesting to see the relation between EDM and anomaly effect, which is

related to topological charge susceptibility χQ. According to the discussion of contribution

from anomaly term in chiral Lagrangian [38–42], they represented the consistent formula

with perspective of QCD,

dN ∼ 2

f 2
π

χ2
QµN

ḡπNN

2mN

(27)

with CP-violation coupling ḡπNN (fπ = 92.4 MeV). Here we also adopt U(1) anomaly relation

[26] χQ = m2
πf

2
π(m

2
η′ − m2

π)/(2Nfm
2
η′) into leading ChPT formulation. Figure 12 plots the

relation of EDM with topological susceptibility measured in this configuration, and also

display the predicted bound in baryon ChPT at the physical point, in which we insert

mπ = 0.135 GeV and mη = 0.957 GeV. One also sees that for neutron EDM there is slight

tension between lattice result and ChPT estimate authough our simulation point is separated

from physical point.

VI. SUMMARY

This paper presents the details of lattice calculation of nucleon electric dipole moment

(EDM) obtained from EDM form factor in matrix element. Here we insert the θ-term into
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Fit CP even and odd parts to common mass
find mixing is momentum, mass (?) independent
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F3 form factor, unsubtracted (ml = 0.005, mπ = 330 MeV)

5 10

-0.5

0

0.5

1

N
eu

tr
on

F
Q

Fα

5 10
at

-0.5

0

0.5

1

Pr
ot

on

5 10

-0.5

0

0.5

1

5 10

-0.5

0

0.5

1

5 10

-0.5

0

0.5

1

5 10
at

-0.5

0

0.5

1

5 10
at

-0.5

0

0.5

1

5 10
at

-0.5

0

0.5

1

np
2 = 1 np

2 = 2 np
2 = 3 np

2 = 4

FIG. 5: Time slice of two divided pieces of EDM form factor into term FQ including three-point

function in θ-NLO and subtraction term Fα including CP-odd phase factor αN and EM form

factors. From the left to right panels show the results at different insertion momenta. Upper panel

is result for neutron and bottom is result for proton at m = 0.005. Here we use three-point function

of µ = t EM current shown in Eq.(14).

form factor. In our analysis we set 0.20 GeV2 ≤ −q2 ≤ 0.55 GeV2 and 0.20 GeV2 ≤ −q2 ≤
0.71 GeV2, and the mean value and statistical error in Table VII is employed as the later

fitting range. The total error of EDM is estimated by quadrature of systematic and statistical

one. One sees that the size of statistical error is dominant in total error, which is more than

90% for ∆t = 12, otherwise in the case of ∆t = 8 statistical error is compatible with

systematic error. It implies that the reduction of statistical error plays an important role

to discriminate the non-linear q2 behavior of EDM form factor. To perform more careful

analysis, we need more accurate calculation, and thus it will take over the future work.

The q2 slope of EDM form factor is also related to the important ingredient for diamag-

netic atom EDM (199Hg, 129Xe, etc) estimate associated with Schiff moment operator [28].

The electromagnetic Schiff moment S ′ arises from interaction of nucleon and electron on

atomic scale, which is locally formed as S ′∂µ(ψ̄γ5ψ)∂νF µν , and this contribution leads to

the leading q2 dependence of EDM form factor after expanding EDM form factor at small
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of µ = t EM current shown in Eq.(14).
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one. One sees that the size of statistical error is dominant in total error, which is more than

90% for ∆t = 12, otherwise in the case of ∆t = 8 statistical error is compatible with

systematic error. It implies that the reduction of statistical error plays an important role

to discriminate the non-linear q2 behavior of EDM form factor. To perform more careful

analysis, we need more accurate calculation, and thus it will take over the future work.

The q2 slope of EDM form factor is also related to the important ingredient for diamag-

netic atom EDM (199Hg, 129Xe, etc) estimate associated with Schiff moment operator [28].

The electromagnetic Schiff moment S ′ arises from interaction of nucleon and electron on

atomic scale, which is locally formed as S ′∂µ(ψ̄γ5ψ)∂νF µν , and this contribution leads to
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F3 form factor, subtracted. Jµ = Jz , Jt
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FIG. 6: The time-slice of the normalized EDM form factor F3/2mN (e·fm) for neutron (top) and

proton (bottom) in m = 0.005 at several momenta. The squared and circle symbols denote the

results by using the µ = z and µ = t direction of EM current.

q2 [28, 30],

S ′ =
∂F3(q

2)/2mN

∂q2

∣∣∣
q2=0

. (25)

Our lattice calculation provides it from the variance of q2 in linearly fitting function in

Eq.(24), whose values are shown in Table VII. Here we use S ′ as the result divided by

θ parameter. The magnitude we obtained on the lattice is comparable with the result of

SU(3) ChPT at the leading-order S ′
n(ChPT) = −3.1 × 10−4 e·fm3 [31], although lattice

result remains large uncertainties. Note that the analytical result in the next-to-leading

order (NLO) of SU(2) [31] and SU(3) [32] ChPT suggests the higher order of pion loop

effect suffers it about 40%, and furthermore there is additionally unknown ambiguity of

low-energy constant corresponding to CP-violating πNN coupling. The more precise value

of S ′ from lattice QCD is important check of validity for the argument in baryon ChPT in

the future.

Figure 10 plots our results as a function of pion mass squared in Nf = 2 + 1 DWFs

configurations and also for the comparison we display the previous lattice calculations in

Nf = 2 configurations with Wilson-clover and DWF fermion actions. Our result gives
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F3 form factor, subtracted. Excited state systematics
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FIG. 7: The comparison of the normalized EDM form factor F3/2mN (e·fm) with different ∆t = 12

(circle) and ∆t = 8 (cross) for neutron (top) and proton (bottom) in m = 0.005 at several momenta.

This is result using µ = t.

non-perturbative value of EDM of neutron and proton in the lightest quark masses and

furthermore lattice size 2.7 fm3 is even larger than others. Since the DWF has good chi-

ral symmetry rather than Wilson-clover fermion, our result has responsible chiral behavior

keeping well control of the lattice artifact due to explicit chiral symmetry violation. Com-

pared to the estimate in effective models based on chiral perturbation theory [33–35] and

QCD sum rules [36, 37] in which they have presented range of d
p(n)
N = (−)(1–4)× 10−3 e·fm

(minus sign in bracket is in the case of neutron), the magnitude of EDM from lattice QCD

is factor 10 larger than these values, although lattice result still has other ambiguities due

to not only statistical noise but also systematic error of finite size effect and relatively large

quark mass. In the next section we discuss a possibility of these systematic errors suffering

in our result.
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F3 form factor, subtracted. Mild q2 dependence
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FIG. 12: The q2 dependence of EDM form factor in 0.33 GeV (top) and 0.42 GeV (middle) pion in

Iwasaki 243. The circle (squared) symbols are neutron (proton) EDM form factor. Filled symbols

denote the results using ∆t = 1.37 fm, and open symbols denote the results using ∆t = 0.9 fm.

lattice calculation is roughly dnN/d
p
N ≃ −2 in mπ = 0.33 GeV, dnN/d

p
N ≃ −0.3 in mπ = 0.42

GeV, and thus even in relatively heavy quark mass, this ratio is roughly same order as the

quark model prediction. To pursue a detail of its comparison precisely, we need to not only

increase the statistical precision but also to carefully investigate the systematic uncertainty.

We consider two sources which are first taking into account as a systematic uncertainty.
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lattice calculation is roughly dnN/d
p
N ≃ −2 in mπ = 0.33 GeV, dnN/d

p
N ≃ −0.3 in mπ = 0.42

GeV, and thus even in relatively heavy quark mass, this ratio is roughly same order as the

quark model prediction. To pursue a detail of its comparison precisely, we need to not only

increase the statistical precision but also to carefully investigate the systematic uncertainty.

We consider two sources which are first taking into account as a systematic uncertainty.
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TABLE IX: Results of EDM and S′

Iwasaki 243 Proton Neutron

mπ (GeV) ∆t (fm) dpN (e·fm) stat. sys. S′
p (e·fm3) dnN (e·fm) stat. sys. S′

n (e·fm3)

0.33 1.37 0.070(36) 0.030 0.018 5.1(7.4)×10−4 -0.047(22) 0.022 0.003 -2.7(4.9)×10−4

0.33 0.9 0.005(20) 0.015 0.012 -5.0(2.9)×10−4 -0.020(15) 0.015 0.012 2.7(1.9)×10−4

0.42 1.37 0.055(32) 0.023 0.022 2.2(5.0)×10−4 -0.009(26) 0.016 0.021 4.2(3.4)×10−4

0.42 0.9 0.026(20) 0.020 0.016 1.8(3.4)×10−4 -0.013(14) 0.014 0.003 -0.9(2.1)×10−4

DSDR 323 Proton Neutron

mπ (GeV) ∆t (fm) dpN (e·fm) stat. sys. S′
p (e·fm3) dnN (e·fm) stat. sys. S′

n (e·fm3)

0.17 1.3 0.103(127) 0.124 0.026 4.1(5.8)×10−3 -0.078(67) 0.065 0.016 -3.2(3.0)×10−3

Fist we need to estimate the finite size effect (FSE) for EDM in this simulation. The

baryon ChPT in the finite box up to the next-to-leading order [17, 18] suggests amount of

FSE contribution in our setting is around 20–30% for chiral logarithmic term. This value is,

however, obtained from the vertex coupling corresponding to CP and CPV πNN coupling,

gπNN and ḡπNN , estimated in the physical point in the infinite volume. We notice that in

order to compare lattice calculation the FSE of gπNN and ḡπNN is also taken into account.
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Nucleon electric dipole moment (in units of θ̄)
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FIG. 14. Summary plot of EDM for neutron (top) and proton (bottom) as a function of pion

mass squared with full QCD calculation in the present analysis and other method and fermion

action. Upper triangles shows our results including total error. Note that previous results have

only statistical errors. The smaller error denotes the statistical error. The cross symbol denotes

the range of model calculation based on the baryon chiral perturbation theory.
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d should vanish in the chiral limit
Neutron has “wrong” mass dependence? Maybe just statistics
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An idea

despite AMA, still statistics challenged

Correlating noisy, would-be-zero measurement with
topological charge seems like a bad idea

After all, nucleon correlation function measured in one
“corner” is completely unrelated (has no overlap) with
topological fluctuations in another corner

we may be amplifying noise!

maybe a more local correlation, i .e. with local topological
charge density would work better

This is not correct, but we may learn something, and as
V →∞ it is correct

could make it arbitrarily complicated, so start of simple and
see if signal/noise improves
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An idea

Try on 243, mf = 0.005 ensemble

already summed over spatial location of operator (FT)

Can break up Q on time slices

Correlate nucleon 2, 3 pt functions with Q(t)

α = −0.178(12) → −0.0217(6)

F3/2m = 0.021(19) → 0.0045(12)

F3/2m = −0.040(14) → −0.0054(8)

Larger sums over time slices under investigation, also spatial
variation interesting too
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Summary/Outlook

Nucleon EDM calculations important to distinguish source in
case of discovery(!)

Signal for p,n EDM’s emerging– AMA important

Statistical errors still relatively large, work still to do

Current DWF calculations on RBC/UKQCD ensembles

323 ((4.6 fm)3), mπ = 170 MeV
483 ((5.5 fm)3), mπ = 140 MeV (underway, RBC/LANL)
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