Calculation of the $\mathrm{D}=4$ contribution to the nEDM using lattice QCD

Tom Blum (UCONN / RBRC) Taku Izubuchi (BNL/RBRC)

ACFI Workshop, January 22-24, 2015

Collaborators

Taku Izubuchi (BNL/RBRC) Eigo Shintani (RBRC) Amarjit Soni (BNL) RBC/UKQCD

Outline I

(1) Introduction

(2) Configuration ensemble and measurement details

(3) Preliminary results
(4) Summary/Outlook

Theory

spin $1 / 2$ particle has interaction with electric (magnetic) field:

$$
H=-d \mathbf{E} \cdot \frac{\mathbf{S}}{S} \rightarrow \mathcal{L}=\frac{-i d}{2} \bar{\psi} \sigma^{\mu \nu} \gamma_{5} \psi F_{\mu \nu}
$$

- mdm odd under P
- edm odd under T
- both even under CPT
- $h \nu=2 \mu B \pm 2 d E$

$$
d=\frac{h \Delta \nu}{4 E}
$$

- measure with ultra-cold neutrons in E, B fields

Status of experiments

- Current value(limit) $d_{n}=0.2(1.5)(0.7) 10^{-26} \mathrm{e} \mathrm{cm}$ $\left(2.9 \times 10^{-26}\right)$ (Sussex-RAL-ILL, 2006)
- New UCN experiments
- PSI (CH): taking data, $\sim 1 \times 10^{-26}$ e cm by 2016
- SNS (ORNL): goal $3-5 \times 10^{-28} \mathrm{e} \mathrm{cm}$
- ...
- New pEDM storage-ring experiment in development - USA/COSY/KAST/... $\left(1 \times 10^{-29} \mathrm{e} \mathrm{cm} \rightarrow 1 \times 10^{-30} \mathrm{e} \mathrm{cm}\right)$
(see talks at Lepton Moments 2014, Cape Cod, by Philipp Schmidt-Wellenburg, Steve Clayton, and Yannis
Semertzidis, http://g2pc1.bu.edu/lept14/program.html)

The electric dipole moment of the nucleon in the SM

- Weak interactions: CKM quark mixing matrix (CP violation)
- three loops
- 4-5 orders smaller than current bound
- Topological charge (θ parameter) in QCD
- In principle θ is $O(1)$, but in Nature $\theta \ll 1$, "Strong CP problem"
- quark electric and chromo-electric edms (higher dimension) appear in BSM theories (see talk by Boram Yoon tomorrow)

θ term in QCD

$$
\begin{aligned}
S_{\mathrm{QCD}} & =-S\left(\mathcal{A}_{\mu}\right)-i \theta \int d^{4} \times \frac{g^{2}}{32 \pi^{2}} \operatorname{tr}[G(x) \tilde{G}(x)] \\
& =-S\left(\mathcal{A}_{\mu}\right)-i \theta Q
\end{aligned}
$$

where Q is the (integer) topological charge, or winding number of the gauge field configuration $\left\{\mathcal{A}_{\mu}(x)\right\}$
θ term renormalizable, Lorentz and gauge invariant but CP (T) odd

$$
G(x) \tilde{G}(x)=1 / 2 \epsilon^{\mu \nu \delta \rho} G^{\delta \rho} G^{\mu \nu} \sim \mathbf{E} \cdot \mathbf{B}
$$

θ term in QCD

If the quarks were massless, the θ term could be removed from the action by doing chiral rotations on the quark fields,

$$
\psi(x) \rightarrow\left(1+i \alpha(x) \gamma_{5}\right) \psi(x)
$$

because the measure in the path integral is *not* invariant under this change of variables,

$$
\mathcal{D} \bar{\psi} \mathcal{D} \psi \rightarrow \exp \left[i \int d^{4} x \alpha(x) \frac{g^{2}}{8 \pi^{2}} G(x) \tilde{G}(x)\right] \mathcal{D} \bar{\psi} \mathcal{D} \psi
$$

so $\alpha(x)=\theta / 2$ kills the θ term

θ term in QCD

Of course, quarks are not massless, so $\alpha(x)=\theta / 2$ may kill the θ term but makes quark masses complex

Convention is to define

$$
\bar{\theta}=\theta+\operatorname{Arg} \operatorname{Det} M_{q}
$$

as the physical value, and if quark masses are real, $\bar{\theta}=\theta$
So for us, $\bar{\theta}$ is coefficient of $i Q$ term in the action

Exp. then requires $\bar{\theta} \lesssim 10^{-10}$ which is Strong CP problem

The electric dipole moment of the nucleon

Let nucleon interact with external field in $\theta \neq 0$ vacuum

$$
\begin{aligned}
\langle N| J_{\mu}|N\rangle_{\theta} & =\bar{u}_{\theta}\left(\vec{p}^{\prime}, s^{\prime}\right)\left(F_{1}\left(q^{2}\right) \gamma_{\mu}+\frac{i F_{2}\left(q^{2}\right)}{2 m_{N}} \sigma_{\mu \nu} q_{\nu}\right. \\
& \left.+\frac{F_{3}\left(q^{2}\right)}{2 m_{N}} \gamma_{5} \sigma_{\mu \nu} q_{\nu}\right) u_{\theta}(\vec{p}, s) \\
q & =p^{\prime}-p
\end{aligned}
$$

$q \rightarrow 0$ limit yields dipole moment(s)
In lattice gauge theory, compute correlation functions of fields in Euclidean space-time,

$$
G^{\mu}\left(t^{\prime}, t\right)=\left\langle\chi_{N}\left(t^{\prime}, \vec{p}^{\prime}\right) J^{\mu}(t, q) \chi_{N}^{\dagger}(0, \vec{p})\right\rangle
$$

The electric dipole moment of the nucleon

Project onto ground states by separating interpolating fields and currents in Euclidean time (LSZ analog)

$$
\begin{aligned}
G^{\mu}\left(t^{\prime}, t\right) & =\sum_{s, s^{\prime}}\langle 0| \chi_{N}\left|p^{\prime}, s^{\prime}\right\rangle\left\langle p^{\prime}, s^{\prime}\right| J^{\mu}|p, s\rangle\langle p, s| \chi_{N}^{\dagger}|0\rangle \frac{e^{-E^{\prime}\left(t^{\prime}-t\right)} e^{-E t}}{2 E 2 E^{\prime}}+\ldots \\
& =G^{\mu}(q) \times f\left(t, t^{\prime}, E, E^{\prime}\right)+\ldots,
\end{aligned}
$$

Appropriate projectors give form factors (e.g. in the CP even case)

$$
\begin{aligned}
\operatorname{tr} \frac{i}{4} \frac{1+\gamma^{t}}{2} \gamma^{y} \gamma^{x} G^{x}\left(q^{2}\right) & =p_{y} m\left(F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right)\right)=p_{y} m G_{M}\left(q^{2}\right) \\
\operatorname{tr} \frac{i}{4} \frac{1+\gamma^{t}}{2} \gamma^{y} \gamma^{x} G^{y}\left(q^{2}\right) & =-p_{x} m\left(F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right)\right)=-p_{x} m G_{M}\left(q^{2}\right) \\
\operatorname{tr} \frac{1}{4} \frac{1+\gamma^{t}}{2} G^{t}\left(q^{2}\right) & =m(E+m)\left(F_{1}\left(q^{2}\right)-\frac{q^{2}}{(2 m)^{2}} F_{2}\left(q^{2}\right)\right) \\
& =m(E+m) G_{E}\left(q^{2}\right)
\end{aligned}
$$

The electric dipole moment of the nucleon

In the CP broken vacuum, we have (for example)

$$
\begin{aligned}
\operatorname{tr} \mathcal{P}^{x y} G^{t}\left(q^{2}\right) & =i p_{z}\left(\alpha m F_{1}\left(q^{2}\right)+\alpha \frac{E+3 m}{2} F_{2}\left(q^{2}\right)+\frac{E+m}{2} F_{3}\left(q^{2}\right)\right) \\
& +\mathcal{O}\left(\theta^{2}\right)
\end{aligned}
$$

where the mixing of even and odd FF comes from the nucleon spinors, which are no longer eigenstates of CP (Pospelo, Ritz 1998)

$$
\begin{aligned}
\sum_{s, s^{\prime}} u_{s^{\prime}, \theta}(\vec{p}) \bar{u}_{s, \theta}(\vec{p}) & =E(\vec{p}) \gamma_{t}-i \vec{\gamma} \cdot \vec{p}+m e^{2 i \alpha \gamma_{5}} \\
& \approx E(\vec{p}) \gamma_{t}-i \vec{\gamma} \cdot \vec{p}+m\left(1+2 i \alpha \gamma_{5}\right)
\end{aligned}
$$

where $u_{\theta}=\exp i \alpha \gamma_{5} u$.
Need to subtract α-terms to get physical edm $\left(F_{3}\right)$

Computing with $\theta \neq 0$

The $\theta \neq 0$ action, being complex, is difficult to simulate with conventional lattice methods. However, this problem can be avoided by working in the small θ limit,

$$
\begin{aligned}
\langle\mathcal{O}\rangle_{\theta} & =\frac{1}{Z(\theta)} \int \mathcal{D} \mathcal{A}_{\mu} \mathcal{D} \bar{\psi} \mathcal{D} \psi \mathcal{O} e^{-S\left(\mathcal{A}_{\mu}\right)-i \theta \int d^{4} \times \frac{g^{2}}{32 \pi^{2}} \operatorname{tr}[G(x) \tilde{G}(x)]} \\
& \approx \frac{1}{Z(0)} \int \mathcal{D} \mathcal{A}_{\mu} \mathcal{D} \bar{\psi} \mathcal{D} \psi(1-i \theta Q) \mathcal{O} e^{-S\left(\mathcal{A}_{\mu}\right)} \\
& =\langle\mathcal{O}\rangle-i \theta\langle Q \mathcal{O}\rangle
\end{aligned}
$$

Generate usual CP-even gauge field ensemble, re-weight with topological charge to get CP-odd part of correlation function

Outline I

(1) Introduction
(2) Configuration ensemble and measurement details
(3) Preliminary results
(4) Summary/Outlook

2+1f DWF + Iwasaki (DSDR) gluons

Ensembles generated by the RBC/UKQCD Collaboration

- $a^{-1}=1.73 \mathrm{GeV}(0.114$
fm)
- lattice size $24^{3} \times 64 \times 16$
- $V=(2.7 \mathrm{fm})^{3}$
- $m_{l}=0.005,0.01$, $m_{s}=0.04$, $m_{\text {res }}=0.00316$
- $m_{\pi}=330,400 \mathrm{MeV}$
- measurements on ~ 750 configs for each mass, separated by 10 MC time units
- $a^{-1}=1.37 \mathrm{GeV}(0.144$ fm)
- lattice size $32^{3} \times 64 \times 32$
- $V=(4.6 \mathrm{fm})^{3}$
- $m_{l}=0.001, m_{s}=0.04$, $m_{\text {res }}=0.0018$
- $m_{\pi}=170 \mathrm{MeV}$
- measurements on 39 configurations, separated by 20 MC time units
[Blum, Izubuchi, Shintani PRD88 (2013) 9, 094503, arXiv:1208.4349

Original

Measurement details

330, 400 MeV Pions

- gaussian-smeared quark sources, APE smeared links
- (zero momentum) sequential propagators at the sink
- spatial momentum inserted at the operator (up to 4 units)
- Use all-mode-averaging (AMA) with
- 400 (180) exact low-modes for 0.005 (0.01) (Implicitly-restarted Lanczos)
- "sloppy" conjugate gradient stopping residual 10^{-4}
- $N_{G}=2^{3} \times 4=32$ approximate measurements / config
- 1 exact measurement (10^{-8} stopping residual)

Measurement details

170 MeV pion

- gaussian-smeared quark sources, APE smeared links
- (zero momentum) sequential propagators at the sink
- spatial momentum inserted at the operator (up to 4 units)
- Use all-mode-averaging (AMA) with
- 1000 exact low-modes (Implicitly-restarted Lanczos)
- "sloppy" conjugate gradient: 125 iterations
- $N_{G}=2 \times 2^{3} \times 7=116$ approximate measurements / config
- 4 exact measurements/config (10^{-8} stopping residual)

Outline I

(1) Introduction
 (2) Configuration ensemble and measurement details

(3) Preliminary results

4 Summary/Outlook

CP even Sach's form factors

(different source-sink separations, 8 and 12 time units)

proton

neutron

CP even Sach's form factors ($m_{l}=0.005, m_{\pi}=330 \mathrm{MeV}$)

- stat errors ~ 1-few\%
- Excited state effects visible, but small

CP even Sach's form factors ($m_{l}=0.001, m_{\pi}=170 \mathrm{MeV}$)

- stat errors ~ 1-few $\%$ here too! AMA is effective

Topological Charge (330, 400 MeV pions)

$m_{l}=0.005$

$$
m_{l}=0.01
$$

Topological Charge (170 MeV pion)

Charge distribution a bit sketchy!

Used

Full ensemble

Mixing coefficient from odd/even 2pt function

effective nucleon mass

mixing coefficient

Fit CP even and odd parts to common mass find mixing is momentum, mass (?) independent

F_{3} form factor, unsubtracted ($m_{l}=0.005, m_{\pi}=330 \mathrm{MeV}$)

F_{3} form factor, subtracted. $J_{\mu}=J_{z}, J_{t}$

F_{3} form factor, subtracted. Excited state systematics

F_{3} form factor, subtracted. Mild q^{2} dependence

Nucleon electric dipole moment (in units of $\bar{\theta}$)

d should vanish in the chiral limit
Neutron has "wrong" mass dependence? Maybe just statistics

An idea

- despite AMA, still statistics challenged
- Correlating noisy, would-be-zero measurement with topological charge seems like a bad idea
- After all, nucleon correlation function measured in one "corner" is completely unrelated (has no overlap) with topological fluctuations in another corner
- we may be amplifying noise!
- maybe a more local correlation, i.e. with local topological charge density would work better
- This is not correct, but we may learn something, and as $V \rightarrow \infty$ it is correct
- could make it arbitrarily complicated, so start of simple and see if signal/noise improves

An idea

- Try on $24^{3}, m_{f}=0.005$ ensemble
- already summed over spatial location of operator (FT)
- Can break up Q on time slices
- Correlate nucleon 2, 3 pt functions with $Q(t)$

$$
\begin{aligned}
\alpha=-0.178(12) & \rightarrow-0.0217(6) \\
F_{3} / 2 m=0.021(19) & \rightarrow 0.0045(12) \\
F_{3} / 2 m=-0.040(14) & \rightarrow-0.0054(8)
\end{aligned}
$$

Larger sums over time slices under investigation, also spatial variation interesting too

Outline I

(1) Introduction

(2) Configuration ensemble and measurement details

(3) Preliminary results
(4) Summary/Outlook

Summary/Outlook

- Nucleon EDM calculations important to distinguish source in case of discovery(!)
- Signal for p,n EDM's emerging- AMA important
- Statistical errors still relatively large, work still to do
- Current DWF calculations on RBC/UKQCD ensembles
- $32^{3}\left((4.6 \mathrm{fm})^{3}\right), m_{\pi}=170 \mathrm{MeV}$
- $48^{3}\left((5.5 \mathrm{fm})^{3}\right), m_{\pi}=140 \mathrm{MeV}$ (underway, RBC/LANL)

Acknowledgments

- This research is supported in part by the US DOE
- Computational resources provided by the RIKEN BNL Research Center, RIKEN, and USQCD Collaboration
- Lattice computations done on
- Ds cluster at FNAL (USQCD)
- RICC at RIKEN
- Gordon cluster at SDSC (XSEDE)

