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Outline

Observables
a) fluctuation properties

universality
symmetry breaking - transition parameter

b) P-odd, T-even – longitudinal asymmetry
c) T-odd, P-even – spectral fluctuations, transition strengths

Statistical Spectroscopy - French and collaborators
a) relating the transition parameter to interaction parameters
b) secular quantities - level densities, strength functions

central limit theorems
moment methods, partitioning
angular momentum decomposition

c) example calculations

Perspectives
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Fluctuation properties – universality
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Wigner introduces random matrix theory (RMT) for
slow neutron resonances
Bohigas-Gianonni-Schmit conjecture

– fluctuation properties of quantum chaotic systems are
universal and follow from RMT

– integrable systems display Poissonian level statistics -
Berry & Tabor

F For chaotic systems, symmetry breaking transitions
are governed by a transition parameter, Λ,
(Pandey-Mehta, French et al.)

Λ =
v2

D2

v2 = local variance of many− body matrix element

D = local mean energy spacing
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P-odd T-even statistical test
F ~σn ·~kn dependent neutron resonance cross-sections

The longitudinal asymmetry is given by
(Sushkov-Flambaum)

An
L =

σ+ − σ−

σ+ + σ−

≈ 2
∑

s

〈ψs|Vpnc|ψp〉
Ep − Es

√
Γn

s

Γn
p

Γn
s ,Γ

n
p – slow neutron s- and p-wave partial

width amplitudes, respectively.
Es,Ep – s- and p-wave resonance energies
〈ψs|Vpnc|ψp〉 – parity odd interaction
many-body matrix element connecting the
resonances

Cross-section and asymmetry
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The P-odd T-even transition parameter

From each measured parity asymmetry, one can extract a
value of 〈ψs|Vpnc|ψp〉.
The TRIPLE collaboration calls the many-body parity
non-conserving matrix element variance M2:

M2 = |〈ψs|Vpnc|ψp〉|2 − |〈ψs|Vpnc|ψp〉|
2

Thus, the extent of symmetry violation is governed by the
transition parameter, Λ, which is essentially a locally
smoothed strength function,

Λ =
M2

Dj+Dj−
= Tr

[
Ṽpncδ(Ep − Hnucl)Ṽpncδ(Es − Hnucl)

]
j+

where the density of states, ρj±(E) =
1

Dj±
= Tr [δ(E − Hnucl)]j± ,

In the neutron resonance region, Dj+ ≈ Dj− .
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Remarks

F A theory for calculating the secular behavior of strength
functions is a key to analyzing statistical tests of symmetry
violation. The statistical spectroscopy of French and
collaborators is designed for this purpose.
It is also necessary to calculate fixed angular
momentum-parity smoothed level densities within
statistical spectroscopy.
Strength densities increase exponentially with excitation
energy, but spreading widths are algebraic (almost
constant),

Γw = 2π
M2

Dj+

Γw is the more natural quantity for combining data from
different nuclei (for greater stastistical significance).
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Wigner’s suggested T-odd P-even statistical tests
F Use suitable fluctuation measure of

level statistics.
One of the best is the number
variance, Σ2(r).
Consider: nuclear data ensemble -
1407 resonance energies in 30
sequences of 27 different nuclei
(Haq, Pandey, Bohigas)
Perturbation theory gives

Σ2(r,Λ) = Σ2(r, 0)− 4ΛR2(r)

Use to bound or determine Λ.
Complete spectra, untainted by
misidentified levels, are very
important.
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Wigner’s suggested statistical tests: no. 1
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Transition strength densities,

ρ(x) =
1√
2πx

exp
(
− x

2

)
TRI

= exp (−x) TRNI

For weak T-violation

ρ(x) ≈ 1√
a

exp
(
− x

a

)
I0

(√
1− a
a

x
)

the variance is σ2 = 2− a,

a = −2π2Λ

3
[
ln
(
2π2Λ

)
+ γ − 2

]
F A weak T-odd interaction only affects the smallest transition

strengths.
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Remarks

F For the nuclear data ensemble, one would expect to find
70-80 transition strengths < 10−3 of the mean.
With perfect data, it could be possible to see effects at
about the level of Λ = 10−4; i.e. the imaginary part of the
many-body matrix element ≈ 1/100 of a mean spacing.
The same remarks apply about Λ being essentially a
strength function and about a T-odd interaction spreading
width.
Statistical spectroscopy calculations follow the same
sequences of steps as for the P-odd T-even case.
The data imitate a small TRNI breaking (Λ = 10−3), but we
didn’t believe the quality of experimental data on very small
strengths allowed for any strong claims.
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Remarks: cont.

An approximate form for a P-odd interaction could be taken to
be

Vw = fπVπ + h1
ρVρ + h2

ρVρ′ + h1
ωVω + h0

ρVρ′′ + h0
ωVω′

The question statistical spectroscopy is designed to answer can
be formulated as,

F "What can one infer about the set {fπ, h1
ρ, h

2
ρ, h

1
ω, h

0
ρ, h

0
ω}

given a measured value of M2 (or Γw)?"

For the time reversal tests, we just quoted an overall bound on,
α, the relative size of the two-body matrix element coupling
constant (< 2 parts in 1000):

Hnucl = h1 + V2 + iαVTRNI
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Linking Λ to symmetry breaking two-body interactions

Statistical spectroscopy gives a method of linking Λ to
interaction parameters, ie. two-body interaction matrix
elements.
It is based on central limit theorems whose parameters are
fixed by low order moment calculations (Mon and French).
The expressions for these moments derive from unitary
group decompositions (Chang, French, Thio), e.g.

Tr(Vk)m =

(
N − k
N − m

)
Tr(Vk)k

(Vk =k-body operator, m particles, and N sing. part. states)
which gives the relationship of expecation values

〈Vk〉m =
(m

k

)
〈Vk〉k
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Secular quantities

The two necessary secular quantities are the smoothed level
densities and strength functions. Both are subject to central
limit theorems.

The smoothed level density

ρ(E) = Tr [δ(E − Hnucl)]

Example level density:
stat. spectroscopy =⇒
Fermi gas parameters from
von Egidy...
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Smoothed level densities and moments
Consider a nuclear Hamiltonian of the form

Hnucl = h1 + V2 h1 =
∑

j

εja
†
j aj V2 =

∑
j<l,k<m

Vjkmla
†
j a†kalam

Imagine the set of two-body matrix elements, {Vjklm}, appear
somewhat random and fluctuate about zero.
F Moments of the interaction are dominated by pairwise

correlations (operator form of CLT!). If v2 =< VV >, then
< V3 > ≈ 0 all odd moments vanish

< V4 > = < VVVV > + < VVVV > + < VVVV >≈ 3v4 m >> 2

or

< V4 > = < VVVV > + < VVVV >≈ 2v4 m = 2

dilute case: m >> 2 - moments of Gaussian
m=2 case - moments of semicircle
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Model spaces and partitions

For a given nucleus far from magic, identify all proton and
neutron orbitals above the core up to and a bit beyond the
intruders (e.g. consult Bohr & Mottelson).

For the level density of 106Pd, one possibility is to consider
proton orbitals – 7/2−, 5/2−, 3/2−, 1/2−, 9/2+, 5/2+, 7/2+

neutrons – 9/2+, 5/2+, 7/2+, 1/2+, 3/2+, 11/2−, 7/2−, 9/2−

That leaves 26 valence protons and 20 valence neutrons
outside a 20 proton, 40 neutron core.
Enumerate all partitions of valence particles in these
orbitals up to maybe 20 MEV above lowest energy.

– Calculate single particle energies and dimensionalities for
each partition. Let m denote a particular partition.

Operator CLT says each partition is spread as a Gaussian
over the eigenstates, centered at the partition energy,
spread < V2 >, and multiplied by partition dimension.
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Partition width

The actual variance used for the partition Gaussians is given by
(Chang, French, and Thio, 1970)

σ2(m) =
∑
r≤s
t≤u

(Nr − mr)(Ns − ms − δrs)mt(mu − δtu)

(Nr − δrt − δru)(Ns − δrs − δsu − δrs)Nt(Nu − δtu)

×
∑

j

(2j + 1)(V(j)rstu)2

Partitions carry a good parity quantum number and restricting
level density or strength density calculations to a particular
parity amounts to separating out positive and negative parity
partitions.
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Fixed-j moments

One approximation is to use energy dependent spin cutoff
factors for each partition.

For an energy and partition dependent angular momentum
density, a series can be truncated at the first Hermite
polynomial (Bethe, French et al.)

ρm(J/E) =
2j + 1√

8πσ6
m

exp
[
−(2j + 1)2

8σ2
m

]
3σ2

m ≈ 〈J2〉m + 〈J2P1(Hnucl)〉mP1(E)

P1(E) = E − Em P1(Hnucl) = Hnucl − 〈Hnucl〉m

This is one part of the calculation where it would be a
worthwhile improvement to go to the second order
polynomial correction. This would give a stronger energy
dependence to the spin cutoff factor.
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Strength functions

The central limit theorem applied to strength functions leads to
a bivariate Gaussian density:

Ŝ(E,E′) =
1

2πσ1σ2
√

1− ξ2
exp

[
− 1

2(1− ξ2)

(
E2

σ2
1
− 2ξEE′

σ1σ2
+

E′2

σ2
2

)]

E → E − Em E → E′ − Em′

This expression is unit normalized and must be multiplied
by an intensity, e.g. 〈V2

pnc〉m.
The 5 parameters (2 centroids, 2 variances, and a
correlation coefficient) can be determined by moments;
e.g. 〈V2

pnc〉m, 〈V2
pncHnucl〉m, 〈VpncHnuclVpnc〉m, 〈VpncHnuclVpncHnucl〉m,

〈H2
nucl〉m, 〈V2

pncH2
nucl〉m, 〈VpncH2

nuclVpnc〉m
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Additional technical details

For strength functions, fixing the angular momentum
follows similarly to the level density case.
The description here is quite oversimplified. The one-body
part of the nuclear Hamiltonian is dealt with exactly and the
resulting δ-spikes are convoluted with bivariate Gaussians
accounting for the residual strong interaction.
Correlation coefficients are mostly in the range [0.7− 0.9]
across the partitions for heavy nuclei and the final results
are not heavily dependent on their exact values.
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Parity violation and the covariance matrix

F For heavy nuclei, the interactions multiplied by the
parameters {fπ, h1

ρ, h
2
ρ, h

1
ω, h

0
ρ, h

0
ω} are strongly correlated.

– Construct a covariance matrix, C, whose many-body matrix
elements, Cjk, are given by the spreading widths derived
using the pairs Vj,Vk.

– Using the notation for eigenvalues and vectors, {λj, χj}
respectively, the total spreading width is given by

Γw =

6∑
j=1

λjχ
2
j

but there aren’t really 6 independent parameters.
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Spreading widths

– The matrix elements in the model spaces associated with
{h1
ρ, h

2
ρ, h

1
ω} are correlated at the 95% level consistently

across the measured nuclei.
– They are correlated with fπ at the 85% level.
– {h0

ρ, h
0
ω} are correlated with each other at the 75% level.

F As a result 4 of the eigenvalues are completely negligible.
The leading eigenvalue is associated with the eigenvector

χ = fπ − 0.25h1
ρ + 0.10h2

ρ + 0.50h1
ω

and 60-70 times greater than the second eigenvalue.
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TRIPLE experiment and spreading widths

Table: Target nuclei parameters: number of asymmetries measured;
neutron threshold energy (MeV); target ground state angular
momentum; level density (eV); best values Fermi gas level density
parameters {a(MeV−1),∆(MeV)}; weak spreading width (10−7 MeV).

Target Asym. Sn I DJ a ∆ Γw
103Rh 4 7.000 1

2 61± 5 12.33 -1.40 1.4+1.2
−0.6

104Pd 1 7.094 0 220± 65 11.91 -0.78 1.0+2.4
−0.5

105Pd 3 9.562 5
2 22± 2 12.68 0.93 0.8+1.3

−0.5
106Pd 2 6.531 0 217± 61 13.28 -0.33 1.0+2.4

−0.5
107Ag 8 7.269 1

2 34± 4 13.22 -1.05 2.7+2.6
−1.2

109Ag 4 6.806 1
2 28± 3 13.98 -1.13 1.3+2.5

−0.7
127I 7 6.826 5

2 42± 3 12.82 -1.43 0.6+0.9
−0.4

232Th 16 4.786 0 19± 2 23.86 -0.59 4.7+2.7
−1.8

238U 5 4.806 0 21± 3 25.69 -0.07 1.3+1.0
−0.6
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TRIPLE experiment

F Effectively, one could account for the
2 greatest eigenvalues and vectors.

– with exptl. uncertainties on M2, the
measurement, gives an ellipse of
consistent values with the two
eigenvectors.

At right is plotted the TRIPLE data
accounting for just the largest one
(χ = fπ − 0.25h1

ρ + 0.10h2
ρ + 0.50h1

ω)
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F Cumulatively, TRIPLE coupled with stat. spec. implies
χ = 14.3+1.7

−1.5, compared to the DDH(?) reasonable range
[−2.0, 10.3].

– DDH underestimates couplings or statistical spectroscopy
analysis needs improvement?
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Some things to contemplate

There is really only 1, possibly 2, parameters determining
the scale of parity violation. This is a good thing for the
TVPV ratio idea.
A measurement of fπ (or some equivalent) could be used
to benchmark the statistical calculations and guide which
of the possible improvements must be incorporated:

– better treatment of angular momentum
– higher order moment corrections more generally
– choice of spaces, single particle energies
– use of effective operator theory or apply perturbative

approach

Statistical laws can be rather robust and forgiving. Matrix
element errors that preserve interaction variances and
covariances correct change nothing.
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