Statistical Tests of Symmetry Violation

Steve Tomsovic

Washington State University, Pullman, WA USA December 2018

Collaborators:

P-odd, T-even

J. David Bowman Anna C. Hayes Mikkel B. Johnson Phys. Rev. C, 2000 unpublished work, 2003 T-odd, P-even

J. Bruce French Akhilesh Pandey V. K. B. Kota Ann. Phys. 1988

・ロト ・四ト ・ヨト ・ヨト

Outline

Observables

a) fluctuation properties

universality symmetry breaking - transition parameter

- b) P-odd, T-even longitudinal asymmetry
- c) T-odd, P-even spectral fluctuations, transition strengths
- Statistical Spectroscopy French and collaborators
 - a) relating the transition parameter to interaction parameters
 - b) secular quantities level densities, strength functions

central limit theorems moment methods, partitioning angular momentum decomposition

- c) example calculations
- Perspectives

<回><モン<

크

Fluctuation properties – universality

- Wigner introduces random matrix theory (RMT) for slow neutron resonances
- Bohigas-Gianonni-Schmit conjecture
 - fluctuation properties of quantum chaotic systems are universal and follow from RMT
 - integrable systems display Poissonian level statistics -Berry & Tabor
- For chaotic systems, symmetry breaking transitions are governed by a transition parameter, Λ, (Pandey-Mehta, French et al.)

$$\Lambda = \frac{v^2}{D^2}$$

$$v^2 = local variance of many - body matrix element$$

$$D = local mean energy spacing$$

Image: A image: A

Poisson RMT

Observables Statistical spectroscopy Perspectives universality Transition parameter

The P-odd T-even transition parameter

- From each measured parity asymmetry, one can extract a value of $\langle \psi_s | V_{pnc} | \psi_p \rangle$.
- The TRIPLE collaboration calls the many-body parity non-conserving matrix element variance *M*²:

$$M^{2} = \overline{|\langle \psi_{s} | V_{pnc} | \psi_{p} \rangle|^{2}} - \overline{|\langle \psi_{s} | V_{pnc} | \psi_{p} \rangle|}^{2}$$

 Thus, the extent of symmetry violation is governed by the transition parameter, Λ, which is essentially a locally smoothed strength function,

$$\Lambda = \frac{M^2}{D_{j^+} D_{j^-}} = \overline{Tr\left[\tilde{V}_{pnc}\delta(E_p - H_{nucl})\tilde{V}_{pnc}\delta(E_s - H_{nucl})\right]}_{j^+}$$

where the density of states, $\rho_{j\pm}(E) = \frac{1}{D_{j\pm}} = \overline{Tr[\delta(E - H_{nucl})]}_{j\pm}$,

• In the neutron resonance region, $D_{j^+} \approx D_{j^-}$.

Remarks

- ★ A theory for calculating the secular behavior of strength functions is a key to analyzing statistical tests of symmetry violation. The statistical spectroscopy of French and collaborators is designed for this purpose.
 - It is also necessary to calculate fixed angular momentum-parity smoothed level densities within statistical spectroscopy.
 - Strength densities increase exponentially with excitation energy, but spreading widths are algebraic (almost constant),

$$\Gamma_w = 2\pi \frac{M^2}{D_{j^+}}$$

 Γ_w is the more natural quantity for combining data from different nuclei (for greater stastistical significance).

Wigner's suggested T-odd P-even statistical tests

- Use suitable fluctuation measure of level statistics.
- One of the best is the number variance, $\Sigma^2(r)$.
- Consider: nuclear data ensemble -1407 resonance energies in 30 sequences of 27 different nuclei (Haq, Pandey, Bohigas)

 $\Sigma^2(r,\Lambda) = \Sigma^2(r,0) - 4\Lambda R_2(r)$

- Use to bound or determine $\Lambda.$
- Complete spectra, untainted by misidentified levels, are very important.

Wigner's suggested statistical tests: no. 1

• Transition strength densities,

$$\rho(x) = \frac{1}{\sqrt{2\pi x}} \exp\left(-\frac{x}{2}\right) \quad TRI$$
$$= \exp\left(-x\right) \quad TRNI$$

For weak T-violation

$$\rho(x) \approx \frac{1}{\sqrt{a}} \exp\left(-\frac{x}{a}\right) I_0\left(\frac{\sqrt{1-a}}{a}x\right)$$

• the variance is $\sigma^2 = 2 - a$,

$$a=-rac{2\pi^2\Lambda}{3}\left[\ln\left(2\pi^2\Lambda
ight)+\gamma-2
ight]$$

★ A weak T-odd interaction only affects the smallest transition strengths.

Remarks

- ★ For the nuclear data ensemble, one would expect to find 70-80 transition strengths $< 10^{-3}$ of the mean.
 - With perfect data, it could be possible to see effects at about the level of $\Lambda = 10^{-4}$; i.e. the imaginary part of the many-body matrix element $\approx 1/100$ of a mean spacing.
 - The same remarks apply about Λ being essentially a strength function and about a T-odd interaction spreading width.
 - Statistical spectroscopy calculations follow the same sequences of steps as for the P-odd T-even case.
 - The data imitate a small TRNI breaking ($\Lambda = 10^{-3}$), but we didn't believe the quality of experimental data on very small strengths allowed for any strong claims.

< 日 > < 回 > < 回 > < 回 > < 回 > <

크

Remarks: cont.

An approximate form for a P-odd interaction could be taken to be

$$V_{w} = f_{\pi}V_{\pi} + h_{\rho}^{1}V_{\rho} + h_{\rho}^{2}V_{\rho'} + h_{\omega}^{1}V_{\omega} + h_{\rho}^{0}V_{\rho''} + h_{\omega}^{0}V_{\omega'}$$

The question statistical spectroscopy is designed to answer can be formulated as,

★ "What can one infer about the set $\{f_{\pi}, h_{\rho}^{1}, h_{\rho}^{2}, h_{\omega}^{1}, h_{\rho}^{0}, h_{\omega}^{0}\}$ given a measured value of M^{2} (or Γ_{w})?"

For the time reversal tests, we just quoted an overall bound on, α , the relative size of the two-body matrix element coupling constant (< 2 parts in 1000):

$$H_{nucl} = h_1 + V_2 + i\alpha V_{TRNI}$$

Stat. Tests Sym. Viol.

Observables Statistical spectroscopy Perspectives Central limit theorems Calculations

Linking Λ to symmetry breaking two-body interactions

- Statistical spectroscopy gives a method of linking Λ to interaction parameters, ie. two-body interaction matrix elements.
- It is based on central limit theorems whose parameters are fixed by low order moment calculations (Mon and French).
- The expressions for these moments derive from unitary group decompositions (Chang, French, Thio), e.g.

$$Tr(V_k)_m = {\binom{N-k}{N-m}} Tr(V_k)_k$$

($V_k =$ k-body operator, *m* particles, and *N* sing. part. states) which gives the relationship of expectation values

$$\langle V_k \rangle_m = \binom{m}{k} \langle V_k \rangle_k$$

Stat. Tests Sym. Viol.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Secular quantities

The two necessary secular quantities are the smoothed level densities and strength functions. Both are subject to central limit theorems.

• The smoothed level density

 $\rho(E) = \overline{Tr\left[\delta(E - H_{nucl})\right]}$

- Example level density: stat. spectroscopy =>
- Fermi gas parameters from von Egidy...

Stat. Tests Sym. Viol.

Smoothed level densities and moments

Consider a nuclear Hamiltonian of the form

$$H_{nucl} = h_1 + V_2 \qquad h_1 = \sum_j \epsilon_j a_j^{\dagger} a_j \qquad V_2 = \sum_{j < l, k < m} V_{jkml} a_j^{\dagger} a_k^{\dagger} a_l a_m$$

Imagine the set of two-body matrix elements, $\{V_{jklm}\}$, appear somewhat random and fluctuate about zero.

★ Moments of the interaction are dominated by pairwise correlations (operator form of CLT!). If v² =< VV >, then
 < V³ > ≈ 0 all odd moments vanish
 < V⁴ > = < VVVV > + < VVVV > + < VVVV > ≈ 3v⁴ m >> 2 or
 < V⁴ > = < VVVV > + < VVVV > ≈ 2v⁴ m = 2

dilute case: m >> 2 - moments of Gaussian m=2 case - moments of semicircle

Model spaces and partitions

For a given nucleus far from magic, identify all proton and neutron orbitals above the core up to and a bit beyond the intruders (e.g. consult Bohr & Mottelson).

- For the level density of ¹⁰⁶Pd, one possibility is to consider proton orbitals - 7/2⁻, 5/2⁻, 3/2⁻, 1/2⁻, 9/2⁺, 5/2⁺, 7/2⁺ neutrons - 9/2⁺, 5/2⁺, 7/2⁺, 1/2⁺, 3/2⁺, 11/2⁻, 7/2⁻, 9/2⁻
- That leaves 26 valence protons and 20 valence neutrons outside a 20 proton, 40 neutron core.
- Enumerate all partitions of valence particles in these orbitals up to maybe 20 MEV above lowest energy.
 - Calculate single particle energies and dimensionalities for each partition. Let m denote a particular partition.
- Operator CLT says each partition is spread as a Gaussian over the eigenstates, centered at the partition energy, spread < V² >, and multiplied by partition dimension.

Partition width

The actual variance used for the partition Gaussians is given by (Chang, French, and Thio, 1970)

$$\sigma^{2}(\mathbf{m}) = \sum_{\substack{r \leq s \\ t \leq u}} \frac{(N_{r} - m_{r})(N_{s} - m_{s} - \delta_{rs})m_{t}(m_{u} - \delta_{tu})}{(N_{r} - \delta_{rt} - \delta_{ru})(N_{s} - \delta_{rs} - \delta_{su} - \delta_{rs})N_{t}(N_{u} - \delta_{tu})} \times \sum_{j} (2j+1)(\mathcal{V}_{rstu}^{(j)})^{2}$$

Partitions carry a good parity quantum number and restricting level density or strength density calculations to a particular parity amounts to separating out positive and negative parity partitions.

Fixed-j moments

One approximation is to use energy dependent spin cutoff factors for each partition.

• For an energy and partition dependent angular momentum density, a series can be truncated at the first Hermite polynomial (Bethe, French et al.)

$$\rho_{\mathbf{m}}(J/E) = \frac{2j+1}{\sqrt{8\pi\sigma_{\mathbf{m}}^{6}}} \exp\left[-\frac{(2j+1)^{2}}{8\sigma_{\mathbf{m}}^{2}}\right]$$

$$3\sigma_{\mathbf{m}}^{2} \approx \langle J^{2}\rangle_{\mathbf{m}} + \langle J^{2}P_{1}(H_{nucl})\rangle_{\mathbf{m}}P_{1}(E)$$

$$P_{1}(E) = E - E_{\mathbf{m}} P_{1}(H_{nucl}) = H_{nucl} - \langle H_{nucl}\rangle_{\mathbf{m}}$$

 This is one part of the calculation where it would be a worthwhile improvement to go to the second order polynomial correction. This would give a stronger energy dependence to the spin cutoff factor.

Strength functions

The central limit theorem applied to strength functions leads to a bivariate Gaussian density:

$$\hat{S}(E, E') = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\xi^2}} \exp\left[-\frac{1}{2(1-\xi^2)} \left(\frac{E^2}{\sigma_1^2} - \frac{2\xi EE'}{\sigma_1\sigma_2} + \frac{{E'}^2}{\sigma_2^2}\right)\right]$$
$$E \to E - E_{\mathbf{m}} \qquad E \to E' - E_{\mathbf{m}'}$$

- This expression is unit normalized and must be multiplied by an intensity, e.g. ⟨V²_{pnc}⟩_m.
- The 5 parameters (2 centroids, 2 variances, and a correlation coefficient) can be determined by moments;
 e.g. (V²_{pnc})_m, (V²_{pnc}H_{nucl})_m, (V_{pnc}H_{nucl}V_{pnc})_m, (V_{pnc}H_{nucl}V_{pnc}H_{nucl})_m, (H²_{nucl})_m, (V²_{pnc}H²_{nucl})_m, (V_{pnc}H²_{nucl}V_{pnc})_m

Additional technical details

- For strength functions, fixing the angular momentum follows similarly to the level density case.
- The description here is quite oversimplified. The one-body part of the nuclear Hamiltonian is dealt with exactly and the resulting δ-spikes are convoluted with bivariate Gaussians accounting for the residual strong interaction.
- Correlation coefficients are mostly in the range [0.7 0.9] across the partitions for heavy nuclei and the final results are not heavily dependent on their exact values.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Observables Statistical spectroscopy Perspectives Central limit theorems Calculations

Parity violation and the covariance matrix

★ For heavy nuclei, the interactions multiplied by the parameters $\{f_{\pi}, h_{\rho}^{1}, h_{\rho}^{2}, h_{\omega}^{1}, h_{\rho}^{0}, h_{\omega}^{0}\}$ are strongly correlated.

- Construct a covariance matrix, C, whose many-body matrix elements, C_{jk} , are given by the spreading widths derived using the pairs V_j , V_k .
- Using the notation for eigenvalues and vectors, $\{\lambda_j, \chi_j\}$ respectively, the total spreading width is given by

$$\Gamma_w = \sum_{j=1}^6 \lambda_j \chi_j^2$$

but there aren't really 6 independent parameters.

・ロト ・四ト ・ヨト ・ヨト

Spreading widths

- The matrix elements in the model spaces associated with $\{h_{\rho}^{1}, h_{\rho}^{2}, h_{\omega}^{1}\}$ are correlated at the 95% level consistently across the measured nuclei.
- They are correlated with f_{π} at the 85% level.
- $\{h_{\rho}^{0}, h_{\omega}^{0}\}$ are correlated with each other at the 75% level.
- ★ As a result 4 of the eigenvalues are completely negligible. The leading eigenvalue is associated with the eigenvector

$$\chi = f_{\pi} - 0.25h_{\rho}^{1} + 0.10h_{\rho}^{2} + 0.50h_{\omega}^{1}$$

and 60-70 times greater than the second eigenvalue.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

TRIPLE experiment and spreading widths

Table: Target nuclei parameters: number of asymmetries measured; neutron threshold energy (MeV); target ground state angular momentum; level density (*eV*); best values Fermi gas level density parameters $\{a(MeV^{-1}), \Delta(MeV)\}$; weak spreading width $(10^{-7} MeV)$.

Target	Asym.	S_n	Ι	D_J	а	Δ	Γ_w	
¹⁰³ Rh	4	7.000	$\frac{1}{2}$	61 ± 5	12.33	-1.40	$1.4^{+1.2}_{-0.6}$	
104 Pd	1	7.094	Ō	220 ± 65	11.91	-0.78	$1.0^{+2.4}_{-0.5}$	
¹⁰⁵ Pd	3	9.562	$\frac{5}{2}$	22 ± 2	12.68	0.93	$0.8^{+1.3}_{-0.5}$	
¹⁰⁶ Pd	2	6.531	Õ	217 ± 61	13.28	-0.33	$1.0^{+2.4}_{-0.5}$	
¹⁰⁷ Ag	8	7.269	$\frac{1}{2}$	34 ± 4	13.22	-1.05	$2.7^{+2.6}_{-1.2}$	
¹⁰⁹ Ag	4	6.806	$\frac{\overline{1}}{2}$	28 ± 3	13.98	-1.13	$1.3_{-0.7}^{+2.5}$	
127	7	6.826	$\frac{\overline{5}}{2}$	42 ± 3	12.82	-1.43	$0.6^{+0.9}_{-0.4}$	
²³² Th	16	4.786	Õ	19 ± 2	23.86	-0.59	$4.7^{+2.7}_{-1.8}$	
²³⁸ U	5	4.806	0	21 ± 3	25.69	-0.07	$1.3^{+1.0}_{-0.6}$	
					- ・ロト・(部・・ヨト・ヨト・ヨークへ)			

Central limit theorems Calculations

TRIPLE experiment

- Effectively, one could account for the 2 greatest eigenvalues and vectors.
 - with exptl. uncertainties on M², the measurement, gives an ellipse of consistent values with the two eigenvectors.
- At right is plotted the TRIPLE data accounting for just the largest one $(\chi = f_{\pi} - 0.25h_{\rho}^{1} + 0.10h_{\rho}^{2} + 0.50h_{\omega}^{1})$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

★ Cumulatively, TRIPLE coupled with stat. spec. implies $\chi = 14.3^{+1.7}_{-1.5}$, compared to the DDH(?) reasonable range [-2.0, 10.3].

 DDH underestimates couplings or statistical spectroscopy analysis needs improvement?

Some things to contemplate

- There is really only 1, possibly 2, parameters determining the scale of parity violation. This is a good thing for the TVPV ratio idea.
- A measurement of f_{π} (or some equivalent) could be used to benchmark the statistical calculations and guide which of the possible improvements must be incorporated:
 - better treatment of angular momentum
 - higher order moment corrections more generally
 - choice of spaces, single particle energies
 - use of effective operator theory or apply perturbative approach
- Statistical laws can be rather robust and forgiving. Matrix element errors that preserve interaction variances and covariances correct change nothing.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・