Electroweak-Scale Objects at a 100 TeV Collider

Brock Tweedie PITT PACC, University of Pittsburgh @ ACFI Workshop 19 September 2015

* Including work in progress with J Chen, T Han, and R Ruiz

How EW-Scale Objects are Made

At the hard process scale

More beam energy \Rightarrow more parton lumi

Hierarchically below the hard process scale...EW parton shower More beam energy \Rightarrow easier access to extreme event kinematics

How EW-Scale Objects are Made

At the hard process scale

More beam energy \Rightarrow more parton lumi

Hierarchically below the hard process scale...EW parton shower More beam energy \Rightarrow easier access to extreme event kinematics

Why Think About EW Parton Showering?

No choice

- impacts almost all physics at E > TeV
- New regime to measure couplings of full EW/Higgs theory
 - different systematics
 - different (smaller?) backgrounds
- New leverage against new physics
 - opportunities for new "light" particle states associated with EWPT?

Example: WZ+Jet @ 100 TeV

p⊤(j) > 3300 GeV

* using lumi = 1 ab⁻¹

Example: WZ+Jet @ 100 TeV

also Moretti, Nolten, Ross (hep-ph/0606201), Denner & Pozzorini (hep-ph/0010202,0104127), many Manohar papers, many other related works

Electroweak Sudakovs

Dittmaier, Huss, Speckner (1210.0438)

Virtual weak corrections to exclusive dijets at LHC14

Christiansen & Sjöstrand (1401.5238)

LO rate minus real W/Z emission events

Novelties wrt QCD/QED Parton Showering

- Perturbative cutoff via SSB
 - physically-measurable soft/collinear emissions
- Longitudinals/scalars
- Chirality
- Yukawa showers
- Neutral boson interference
 - correct basis is W^0/B^0 , not γ/Z
- Weak isospin self-averaging
 - $u(x) > d(x) \rightarrow u_R(x) > Q_L(x) > d_R(x)$

Electroweak Splittings

Electroweak Splittings

+ 1 \rightarrow 3 splittings

Electroweak Splittings

+ 1 \rightarrow 3 splittings

Massive Splitting Functions

* E.g., ISR \Rightarrow polarized W/Z PDFs: Kane, Repko, Rolnik (1984), Dawson (1985)

Light Quark Total Splitting Rates

Averaged over flavors & helicities, summed over W & Z

$$\mathcal{P}(q \to V_T q) \simeq (3 \times 10^{-3}) \left[\log \frac{E}{m_{\rm EW}} \right]^2 \Rightarrow \mathcal{P}(1 \text{ TeV}) \simeq 1.7\%, \quad \mathcal{P}(10 \text{ TeV}) \simeq 7\%$$

 $\mathcal{P}(q \to V_L q) \simeq (2 \times 10^{-3}) \log \frac{E}{m_{\rm EW}} \Rightarrow \mathcal{P}(1 \text{ TeV}) \simeq 0.5\%, \quad \mathcal{P}(10 \text{ TeV}) \simeq 1\%$

Parton Lumis at 100 TeV Collider

"Broken" Showering at O(v)

"Broken" Showering at O(v)

* All beamed into a cone of size ~m/E

Gauging to Manifest Goldstone Equivalence

$$\langle A_T(k)A_T(-k)\rangle = \frac{i}{k^2 - m^2} \langle A_{\phi}(k)A_{\phi}(-k)\rangle = \frac{i}{k^2 - m^2} \operatorname{sign}(k^2) \langle \phi(k)\phi(-k)\rangle = \frac{i}{k^2 - m^2} \langle A_{\phi}(k)\phi(-k)\rangle = \frac{i}{k^2 - m^2} \frac{-im}{\sqrt{|k^2|}}.$$

- Delete (sometimes) problematic k^µ/m part of longitudinal polarization
 - replaced by on- & off-shell in Feynman rules by Goldstone
 - amplitude to create on-shell longitudinal from $A^{\mu} \sim m/E$
- Keep mixed field basis
- Unlike R_ξ, Goldstone field interpolates physical longitudinal bosons (amplitude ~ i)

* see also Wulzer (1309.6055), Srivastava & Brodsky (hep-ph/0202141), earlier papers

Factorization for Longitudinals

Factorization for Longitudinals

regular (~1/E²)

Transverse Vector Total Splitting Rates

$$\mathcal{P}(V_T \to V_T V_T) \simeq (0.01) \left[\log \frac{E}{m_{\rm EW}} \right]^2 \quad \Rightarrow \quad \mathcal{P}(1 \text{ TeV}) \simeq 6\%, \quad \mathcal{P}(10 \text{ TeV}) \simeq 22\%$$

$$\mathcal{P}(V_T \to V_T V_L) \simeq (0.01) \log \frac{E}{m_{\rm EW}} \quad \Rightarrow \quad \mathcal{P}(1 \text{ TeV}) \simeq 2\%, \quad \mathcal{P}(10 \text{ TeV}) \simeq 5\%$$

$$\mathcal{P}(V_T \to V_L V_L) \simeq (4 \times 10^{-4}) \log \frac{E}{m_{\rm EW}} \quad \Rightarrow \quad \mathcal{P}(1 \text{ TeV}) \simeq 0.1\%, \quad \mathcal{P}(10 \text{ TeV}) \simeq 0.2\%$$

$$\mathcal{P}(V_T \to f\bar{f}) \simeq (0.02) \log \frac{E}{m_{\rm EW}} \quad \Rightarrow \quad \mathcal{P}(1 \text{ TeV}) \simeq 5\%, \quad \mathcal{P}(10 \text{ TeV}) \simeq 10\%$$

$$\mathcal{P}(V_T \to V_L h) \simeq (4 \times 10^{-4}) \log \frac{E}{m_{\rm EW}} \quad \Rightarrow \quad \mathcal{P}(1 \text{ TeV}) \simeq 0.1\%, \quad \mathcal{P}(10 \text{ TeV}) \simeq 0.2\%$$

 $\mathcal{P}(V_T \to V_T h) \simeq (3 \times 10^{-4}) \quad \Rightarrow \quad \mathcal{P}(1 \text{ TeV}) \simeq 0.03\%, \quad \mathcal{P}(10 \text{ TeV}) \simeq 0.03\%$

Longitudinal Vector Total Splitting Rates

$$\mathcal{P}(V_L \to V_T V_L) \sim (2 \times 10^{-3}) \left[\log \frac{E}{m_{\rm EW}} \right]^2 \quad \Rightarrow \quad \mathcal{P}(1 \text{ TeV}) \sim 1\%, \quad \mathcal{P}(10 \text{ TeV}) \sim 4\%$$

$$\mathcal{P}(V_L \to V_T h) \sim (2 \times 10^{-3}) \left[\log \frac{E}{m_{\rm EW}} \right]^2 \quad \Rightarrow \quad \mathcal{P}(1 \text{ TeV}) \sim 1\%, \quad \mathcal{P}(10 \text{ TeV}) \sim 4\%$$

Plus many others.....

Our Shower Program

- Currently PYTHIA6-like virtuality-ordered
 - collinear approximation, no coherence between dipoles
- Polarized splittings
- Massive splitting functions
 - amplitudes and phase space
- Reweighting of secondary splittings
- Interleaved with QCD
- Only FSR (so far)
- Built in C++...ideally adapt to run within PYTHIA 8 framework

WZ+Jet Revisited

MadGraph

Pythia8 W/Z+jet + EW-Shower

WZ+Jet Revisited

~10% loss from further showering

MadGraph

Pythia8 W/Z+jet + EW-Shower

Krauss, Petrov, Schönherr, Spannowsky (1403.4788)

Effect on Top-Tagging (Any pT > TeV)

Leptonic top-jets: main background (~10⁻³ quark-mistag)

Hadronic top-jets: 5-10% perturbation to quark mistag

Rehermann & Tweedie (1007.2221)

with Z Han & M Son

As a Handle on Heavy New Physics

Radiated Z-boson traces neutrino's 3-vector direction (and probes W' chirality) Some Other Back-of-the Envelope Applications

- W_TW_T production at O(10 TeV)
 - $W_TW_T \rightarrow W_TW_T$ scattering: potentially O(1) showering probability
 - KK graviton: corrections up to O(50%)
- W_LW_L production at O(10 TeV)
 - − $W_LW_L \rightarrow W_LW_L/hh$, Z'→Z_Lh, W'→W_Lh/W_LZ_L: O(10%) showering probability

"New" Higgs Production Modes

Are they good for something? Reduced systematics? Complementary information?

	Process	$\sigma_{ m NLO}(8~{ m TeV})~{ m [fb]}$	$\sigma_{ m NLO}(100 { m ~TeV}) { m [fb]}$	ρ	*slide from
$pp \rightarrow$	$H\left(m_t,m_b ight)$	$1.44\cdot 10^4 \ {}^{+20\%}_{-16\%} \ {}^{+1\%}_{-2\%}$	$5.46\cdot 10^5 \ {}^{+28\%}_{-27\%} \ {}^{+2\%}_{-2\%}$	38	Mongono
$pp \rightarrow$	Hjj (VBF)	$1.61\cdot 10^3 ~^{+1\%}_{-0\%} ~^{+2\%}_{-2\%}$	$\left \begin{array}{ccc}7.40\cdot10^{4} \begin{array}{c}+3\% \\ -2\% \end{array}\right. +2\% \\ -2\% \\ -1\% \end{array}\right $	46	wanyano
$pp \rightarrow$	$Htar{t}$	$1.21\cdot 10^2 {}^{+5\%}_{-9\%} {}^{+3\%}_{-3\%}$	$3.25\cdot 10^4 {}^{+7\%}_{-8\%} {}^{+1\%}_{-1\%}$	269	(HXSVVG
$pp \rightarrow$	$Hb\bar{b}~(4{ m FS})$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1.21\cdot 10^4 {}^{+2\%}_{-10\%} {}^{+2\%}_{-2\%}$	51	meeting, July)
$pp \rightarrow$	Htj	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$5.21\cdot 10^3 {}^{+3\%}_{-5\%} {}^{+1\%}_{-1\%}$	252	
$pp \rightarrow$	HW^{\pm}	$7.31\cdot 10^2 \ {}^{+2\%}_{-1\%} \ {}^{+2\%}_{-2\%}$	$1.54\cdot 10^4 \ {}^{+5\%}_{-8\%} \ {}^{+2\%}_{-2\%}$	21	
$pp \rightarrow$	HZ	$3.87\cdot 10^2 {}^{+2\%}_{-1\%} {}^{+2\%}_{-2\%}$	$\left \begin{array}{ccc} 8.82\cdot 10^3 \begin{array}{c} +4\% \\ -8\% \end{array} \right. \begin{array}{c} +2\% \\ -8\% \end{array} \right $	23	
$pp \rightarrow$	HW^+W^- (4FS)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1.68\cdot 10^2 {}^{+5\%}_{-6\%} {}^{+2\%}_{-1\%}$	36	
$pp \rightarrow$	HZW^{\pm}	$2.17\cdot 10^{0}~^{+4\%}_{-4\%}~^{+2\%}_{-2\%}$	$9.94\cdot 10^1 \ {}^{+6\%}_{-7\%} \ {}^{+2\%}_{-1\%}$	46	
$pp \rightarrow$	$HW^{\pm}\gamma$	$2.36\cdot 10^{0}~^{+3\%}_{-3\%}~^{+2\%}_{-2\%}$	$7.75\cdot 10^1 \ {}^{+7\%}_{-8\%} \ {}^{+2\%}_{-1\%}$	33	
$pp \rightarrow$	$HZ\gamma$	$1.54\cdot 10^{0} {}^{+3\%}_{-2\%} {}^{+2\%}_{-2\%}$	$\left \begin{array}{ccc} 4.29\cdot 10^1 \begin{array}{c} +5\% \\ -7\% \end{array} \right. \begin{array}{c} +2\% \\ -2\% \end{array} \right $	28	
$pp \rightarrow$	HZZ	$1.10\cdot 10^{0}~^{+2\%}_{-2\%}~^{+2\%}_{-2\%}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	38	
$pp \rightarrow$	$HW^{\pm}j$	$3.18\cdot 10^2 \ {}^{+4\%}_{-4\%} \ {}^{+2\%}_{-4\%}$	$1.07\cdot 10^4 \ {}^{+2\%}_{-7\%} \ {}^{+2\%}_{-1\%}$	34	
$pp \rightarrow$	$HW^{\pm}jj$	$6.06\cdot 10^{1}$ $^{+6\%}_{-8\%}$ $^{+1\%}_{-1\%}$	$\begin{array}{c} 4.90\cdot 10^3 \ {}^{+2\%}_{-6\%} \ {}^{+1\%}_{-1\%} \end{array}$	81	
$pp \rightarrow$	HZj	$1.71\cdot 10^2 {}^{+4\%}_{-4\%} {}^{+1\%}_{-1\%}$	$6.31\cdot 10^3 \ {}^{+2\%}_{-7\%} \ {}^{+2\%}_{-1\%}$	37	
$pp \rightarrow$	HZjj	$3.50\cdot10^{1}~^{+7\%}_{-10\%}~^{+1\%}_{-1\%}$	$\left \begin{array}{ccc} 2.81\cdot 10^3 \begin{array}{c} +2\% \\ -5\% \end{array} \right. +1\% \\ -5\% \end{array}$	80	

Table 1: Production of a single Higgs boson at the LHC and at a 100 TeV FCC-hh. The rightmost column reports the ratio ρ of the FCC-hh to the LHC cross sections. Theoretical uncertainties are due to scale and PDF variations, respectively. Monte-Carlo-integration error is always smaller than theoretical uncertainties, and is not shown. For $pp \rightarrow HVjj$, on top of the transverse-momentum cut of section 2. I require $m(j_1, j_2) > 100$ GeV, j_1 and j_2 being the hardest and next-to-hardest jets, respectively. Processes $pp \rightarrow Htj$ and $pp \rightarrow Hjj$ (VBF) do not feature jet cuts.

P.Torrielli, arXiv:1407.1623

Balance of "clean" high-p_T topologies vs small high-p_T rates not a priori obvious

Semi-Boosted Measurement of Top Yukawa

Mangano, et al (1507.08169)

Δy ~ % with 20 ab⁻¹ PDF uncertainties cancel

Summary

- 100 TeV collider opens up new kinematic regimes for interactions of EW-scale particles
 - hopefully this at least served as a reminder
- EW splitting processes quickly grow/asymptote in rate
 - range from totally negligible to O(1), depending on what you're looking at
- We're working on a multipurpose EW shower program
 - "quick and dirty" way to capture universal collinear physics
 - main addition is W→WW, lots of other Higgs and Goldstoneequivalent processes
- Opportunities for precision/supplementary coupling measurements in/near these kinematic regions
- Sensitivity to new "light" states?

"Shower" Vs "Prompt" Diboson

p_⊤(leading V)

p_T(subleading V)

H_T(jets + V's)

Multiple Weak Emissions Inside One Jet

$u_L(10 \text{ TeV}) \rightarrow d_LW^+Z$

ΔR(Z, rest of jet)

рт(W) / рт(j)

* R=1.0 anti-kT jet, W/Z as partons

Isospin Self-Averaged PDFs

