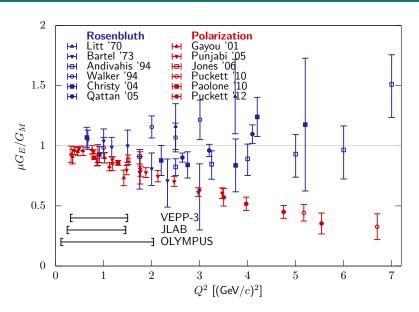
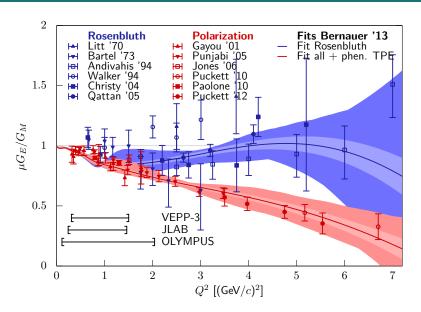
Two photon exchange: What to measure next


Jan C. Bernauer

ACFI workshop "The Electroweak Box" – September 2017



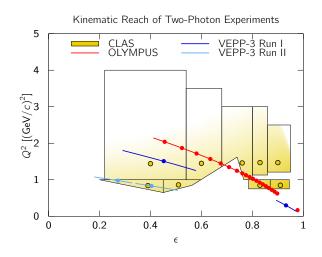
Massachusetts Institute of Technology

Phenomenology

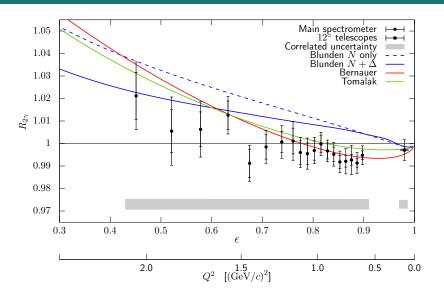
Phenomenology

Direct measurement: Three modern experiments

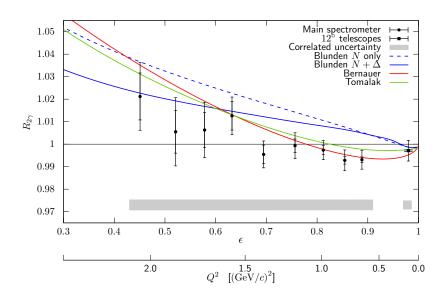
CLAS

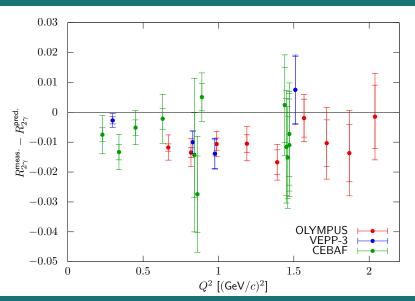

- \circ e⁻ to γ to e^{+/-}
 -beam
- Phys. Rev. C 95, 065201 (2017)
- PRL 114, 062003

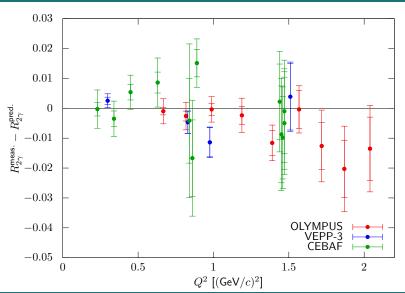
VFPP-3


- 1.6/1 GeV beam
- no field
- Phys. Rev. Lett. 114, 062005 (2015)

OL MPUS


- O DORIS @ DESY
- 2 GeV beam
- Phys. Rev. Lett. 118, 092501 (2017)


OLYMPUS results (B. Henderson et al., Phys. Rev. Lett. 118, 092501 (2017))


OLYMPUS results re-binned

Difference of data to prediction: Blunden's hadronic calculation

Difference of data to prediction: Bernauer et al. phenomenological prediction

χ^2 of the world data set

	VEPP-3	CLAS		OLYMPUS		World
	$\frac{\chi^2}{n_{\rm d.f.}}$	$\frac{\chi^2}{n_{\rm d.f.}}$	N.	$\frac{\chi^2}{n_{\rm d.f.}}$	N.	$\frac{\chi^2}{n_{\rm d.f.}}$
No hard TPE	7.97	0.84	0.43σ	0.65	0.75σ	1.53
Blunden	4.01	0.70	1.23σ	0.73	2.14σ	1.088
Bernauer	1.95	0.58	-0.40 σ	0.49	0.45σ	0.679

- CLAS and OLYMPUS have too large errors
- Vepp-3 rules out no hard TPE
- Blunden et al get slope right, but large normalization shifts.
 - Probability for worse shift in same direction: < 0.4%</p>
- Phenomenological fit clearly preferred by all three experiments

 For the measured values, good agreement with phenomenological extraction.

- For the measured values, good agreement with phenomenological extraction.
- But not in good agreement with theory.

- For the measured values, good agreement with phenomenological extraction.
- But not in good agreement with theory.

Not clear how to calculate at higher Q^2

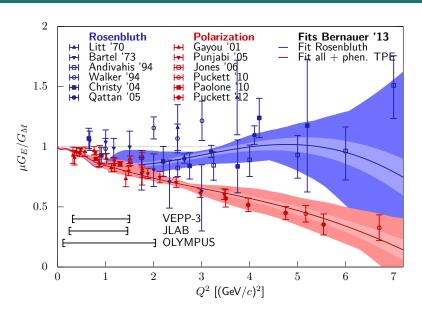
 \longrightarrow Can not extract G_E and G_M from Rosenbluth exps!

Not clear if TPE is full effect

 \longrightarrow Can not trust polarization based exps on G_E/G_M ?

- For the measured values, good agreement with phenomenological extraction.
- But not in good agreement with theory.

Not clear how to calculate at higher Q^2


 \longrightarrow Can not extract G_E and G_M from Rosenbluth exps!

Not clear if TPE is full effect

 \longrightarrow Can not trust polarization based exps on G_E/G_M ?

Need new measurements at relevant kinematics

Phenomenology

• We assume a correction to the cross section:

$$d\sigma
ightarrow d\sigma (1 + \delta_{TPE})$$

• How does δ_{TPE} depend on ϵ , Q^2 ?

• We assume a correction to the cross section:

$$d\sigma o d\sigma (1 + \delta_{TPE})$$

- How does δ_{TPE} depend on ϵ , Q^2 ?
 - From linearity of Rosenbluth:

$$\delta_{TPE} = (1 - \epsilon)f(Q^2)$$

• Effect on G_E/G_M seems to be linear in Q^2

• We assume a correction to the cross section:

$$d\sigma o d\sigma \, (1 + \delta_{TPE})$$

- How does δ_{TPE} depend on ϵ , Q^2 ?
 - From linearity of Rosenbluth:

$$\delta_{TPE} = (1 - \epsilon)f(Q^2)$$

- Effect on G_E/G_M seems to be linear in Q^2
- However:

$$d\sigma_{red} \rightarrow d\sigma_{red} \left(1 + (1 - \epsilon) \times f(Q^2)\right) = \epsilon G_E^2 + \tau G_M^2$$

17

• We assume a correction to the cross section:

$$d\sigma o d\sigma \, (1 + \delta_{TPE})$$

- How does δ_{TPE} depend on ϵ , Q^2 ?
 - From linearity of Rosenbluth:

$$\delta_{TPE} = (1 - \epsilon)f(Q^2)$$

- Effect on G_F/G_M seems to be linear in Q^2
- However:

$$d\sigma_{red} \rightarrow d\sigma_{red} \left(1 + (1 - \epsilon) \times f(Q^2)\right) = \epsilon G_E^2 + \tau G_M^2$$

$$\Longrightarrow \frac{G_E}{G_M} \sim 1 - \alpha \tau f(Q^2)$$

We can only expect weak dependence on Q²
 Logarithmic dependence in Mainz fit, many calculations

Constructing a figure of merit

- Use Mainz fit as benchmark of effect size to reconcile FF measurements.
- Signal is larger for smaller ϵ , larger Q^2 , but then σ is smaller \rightarrow larger uncertainty

Constructing a figure of merit

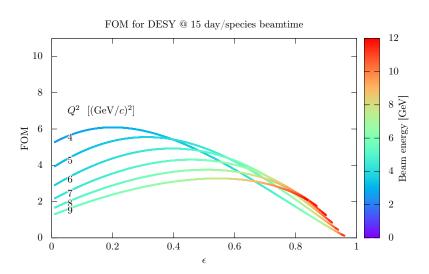
- Use Mainz fit as benchmark of effect size to reconcile FF measurements.
- Signal is larger for smaller ϵ , larger Q^2 , but then σ is smaller \rightarrow larger uncertainty
- FOM is the deviation of $R_{2\gamma}$ from unity, measured in units of uncertainty:

$$FOM = rac{\left| \mathcal{R}_{2\gamma} - 1
ight|}{\sqrt{\Delta_{stat}^2 + \Delta_{syst}^2}}$$

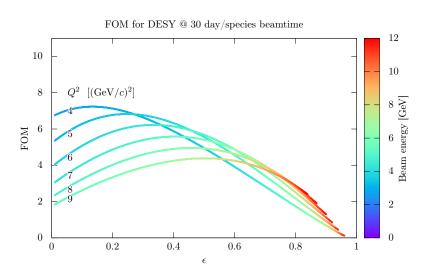
- Statistical error: $\Delta_{stat} = \sqrt{\frac{2}{\sigma \times L \times t \times A}}$
- Systematical error: $\Delta_{svst}=1\%$

Positron beams are scarce

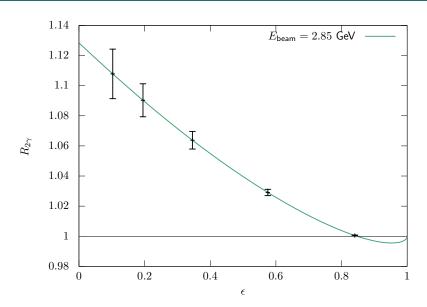
- Positron beams are scarce
- In the relevant energy range, almost non-existent


- Positron beams are scarce
- In the relevant energy range, almost non-existent
- Jefferson Lab
 - Has detectors, but no beam (yet)

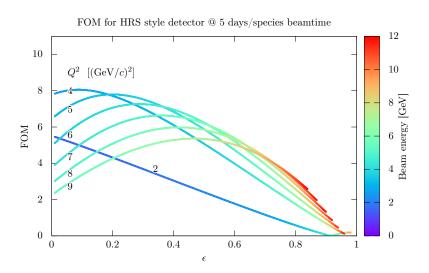
- Positron beams are scarce
- In the relevant energy range, almost non-existent
- Jefferson Lab
 - Has detectors, but no beam (yet)
- DFSY
 - Has no detectors, but beam
 - However: small time window: PETRA 3 will run with electrons only!

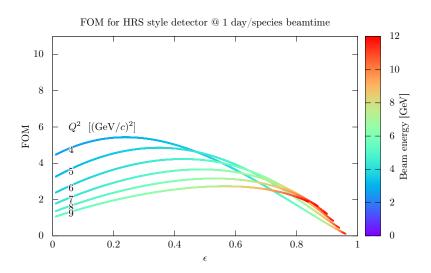

DESY

- DESY might have a test beam facility with positron/electron beams.
- Current: 60 nA (single bunch, maybe can do more?)
- Short window of opportunity: PETRA 3 might stop positron running.
- Target: Borrow from Mainz?
- Detector: Borrow something developed for Panda?
 Calorimeter? Assume 10 msr


DESY @ 15 days per species

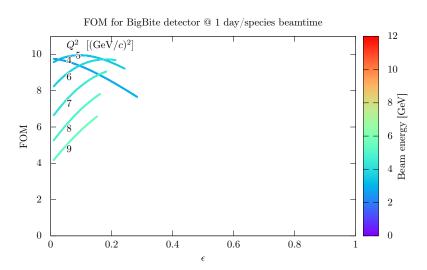
DESY @ 30 days per species


DESY projected errors (15 days per species)


Jefferson Lab

- Assume $1\mu A$ positron/electron beam on 10 cm target $\Rightarrow L = 2.6 \cdot 10^{36}/(cm^2s)$
- Acceptance: 6 msr

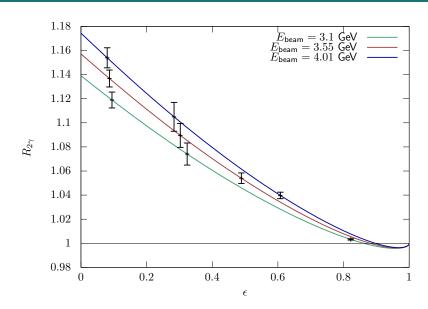
JLab @ 5 days per species


JLab @ 1 day per species

JLab BigBite

- 96 msr!
- But limited momentum acceptance.
- Limits angle $> 70 90^{\circ}$

JLab BigBite @ 1 day per species

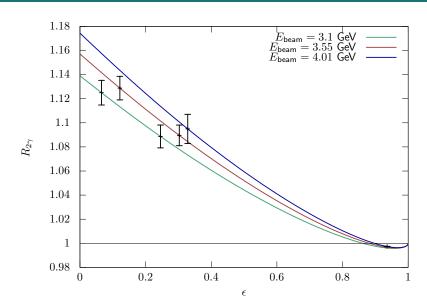


Hall A

- 10 cm target
- two spectrometers, 6.7 msr
- BigBite, 96 msr
- runtime with 100% efficiency

E _{beam}	3.1	3.55	4.01
Angles	30/70/110	52.7/70/110	42.55/70/110
Q^2	1.79/3.99/4.75	3.99/4.75/5.56	3.99/5.55/6.4
ϵ	0.822/0.32/0.1	0.49/0.3/0.09	0.6/0.28/0.08
Time	1 day	2 days	3 days

Hall A projected errors



Hall C

- 10 cm target for HMS, SHMS
- HMS: 6 msr (e^-), SHMS 4 msr (proton)
- runtime with 100% efficiency

E _{beam}	3.1	3.55	4.01	
Angles	79.7/7.64 (120)	70/9.95 (100)	18/16.57 (65)	
Q^2	4.25/4.84	4.76/5.43	1.3/5.35	
ϵ	0.244/0.06	0.302/0.122	0.935/0.33	
Time	3 days	2 days	1 days	

Hall C projected errors

What about the proton radius?

```
r_{e} (fm) r_{m} (fm) (ours) McKinley/Feshbach 0.879 0.777 Borisyuk/Kobuskin 0.876 0.803 Arrington/Sick 0.875 0.769 Blunden et al. 0.875 0.799 more to come!
```

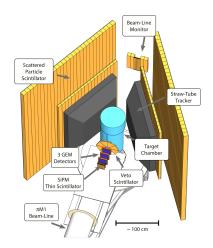
- Probably not important for electric radius.
- Very important for magnetic radius!
- \implies Measure at low Q^2 too!

MUSE: The missing piece

r _E (fm)	ер	μp
Spectroscopy	0.8758 ± 0.077	0.84087 ± 0.00039
Scattering	0.8770 ± 0.060	????

Measure radius with muon-proton scattering

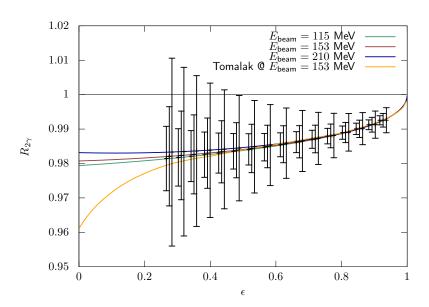
MUSE - Muon Scattering Experiment at PSI

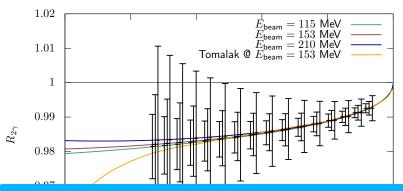


World's most powerful low-energy $e/\pi/\mu$ -beam:

Direct comparison of ep and $\mu p!$

- Beam of $e^+/\pi^+/\mu^+$ or $e^-/\pi^-/\mu^-$ on liquid H_2 target
 - Species separated by ToF, charge by magnet
- ullet Absolute cross sections for ep and μp
- Charge reversal: test TPE
- Momenta 115-210 MeV/c \Rightarrow Rosenbluth G_E , G_M


Experiment layout


R. Gilman et al., arXiv:1303.2160 (nucl-ex)

- Secondary beam ⇒ track beam particles
- Low flux (5 MHz) → large acceptance
- Mixed beam ⇒ identify particles in trigger

MUSE projected errors (e[±]only)

MUSE projected errors (e[±]only)

- ullet Can test ϵ behavior important for electric radius
- Maybe test theory
- ullet Cannot test ϵ behavior important for magnetic radius
- ullet Low- ϵ experiment at PSI not feasible.

 ϵ

How to get a good result: Systematic errors I

- Many systematics cancel if measured with same apparatus
- But: How same is same?
 - Have to reverse field?
 - Efficiency, dead time stable?
 - Same beam energy / same beam angle?

How to get a good result: Systematic errors I

- Many systematics cancel if measured with same apparatus
- But: How same is same?
 - Have to reverse field?
 - Efficiency, dead time stable?
 - Same beam energy / same beam angle?

Switch beam species often. If possible, multiple times a day!

Systematic errors II

- Need beam-species-relative luminosity
 - Easier than absolute luminosity
 - Harder than same-species-relative luminosity

Systematic errors II

- Need beam-species-relative luminosity
 - Easier than absolute luminosity
 - Harder than same-species-relative luminosity
- Moeller/Bhabha not ideal
 - Need essentially absolute cross section for both processes (including radiative effects)
- Super forward elastic lepton-proton
 - High rates, but same process, so easier theory
- Look at random coincidences
 - only works if beam is bunched
 - see: arxiv:1708.04616

Systematic errors II

- Need beam-species-relative luminosity
 - Easier than absolute luminosity
 - Harder than same-species-relative luminosity
- Moeller/Bhabha not ideal
 - Need essentially absolute cross section for both processes (including radiative effects)
- Super forward elastic lepton-proton
 - High rates, but same process, so easier theory
- Look at random coincidences
 - only works if beam is bunched
 - see: arxiv:1708.04616

This is the trickiest part!

Conclusion

- \bullet New measurements crucial for understanding form factors at large $\ensuremath{\text{Q}}^2$
- Also crucial for magnetic radius
- Effect in G_E/G_M grows ~linearly \rightarrow weak Q^2 dependence of TPE
- Ideal program for large Q²
 - Pilot experiment at DESY
 - Full study at JLAB
- Some low-Q² data will come from MUSE. Probably not enough for magnetic radius.
- MUSE will also have pion data. Interesting?