NEW ULTRA-LIGHT FORCE CARRIERS PRECISION TESTS, DARK MATTER, AND A NEW DIRECT DETECTION EXPERIMENT

work with:

Peter Graham, Surjeet Rajendran & Yue Zhao

and experimental collaborators:

Sami Tantawi, Vinod Bharadwaj, Kent Irwin, Saptarshi Chaudhuri

HIDDEN PHOTONS

ULTRA-LIGHT HIDDEN PHOTON

A kinetically-mixed, massive, U(1)' gauge boson

 $\int = \int_{SM} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{1}{2\epsilon} F_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu}^2$

kinetic mixing ε with photon

ULTRA-LIGHT HIDDEN PHOTON

A kinetically-mixed, massive, U(1)' gauge boson

kinetic mixing ε with photon

Jeremy Mardon, SITF, stanioro

SNOWMASS 1401.6077

ULTRA-LIGHT HIDDEN PHOTONS

To a particle theorist Kinetically-mixed, massive, U(1)' gauge boson

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4} F'^2 - \frac{2\epsilon F_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu}^2}{2\epsilon F_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu}^2}$$

kinetic mixing ε with photon

small mass (with no hierarchy problem)

To an experimental physicist A new force / force carrier:

a copy of E&M, with a finite range & very weakly coupled

EM: — massless photon — coupling strength e EM': — *massive* hidden photon — coupling strength εe

ULTRA-LIGHT HIDDEN PHOTONS

a copy of E&M, with a finite range & very weakly coupled

EM: — massless photon — coupling strength e EM': — *massive* hidden photon — coupling strength εe

PARAMETRICALLY ENHANCED LIGHT-THROUGH-WALLS SEARCHES FOR HIDDEN PHOTONS

P.Graham, J.M., S. Rajendran & Y. Zhao 1407.4806

2 IMPORTANT POINTS

I: all effects decouple when $m_{\gamma'} \rightarrow 0$

2: massive hidden photon has 2 transverse modes + 1 longitudinal

EXISTING BOUNDS

Jaeckel & Ringwald 1002.0329

LIGHT THROUGH WALLS SEARCHES

Fields leak through shields

MICROWAVE CAVITIES ARE IDEAL

Jaeckel & Ringwald 0707.2063

- amazing resonant enhancement: $Q \sim 10^{10}$
- 2 cavities can be tuned to same frequency
- self-shielding

Jeremy Mardon, SITP, Stanford

Early-stage experiments already carried outPovey et al 1003.0964ADMX 1007.3766

CROWS 1310.8098

WITH TRANSVERSE MODES

Can be treated as an oscillation phenomenon

Ahlers et al 0706.2836 Jaeckel & Ringwald 0707.2063

WITH TRANSVERSE MODES

Can be treated as an oscillation phenomenon

WITH THE LONGITUDINAL MODE

Hidden photon longitudinal mode is also produced
Passes through all shielding
No oscillation (no photon longitudinal mode to mix with)
Parametrically stronger signal than transverse modes

PARAMETRICALLY ENHANCED LIMIT

REACH

Scanning for Hidden Photon Dark Matter with a High-Q Radio

HIDDEN-PHOTONS AS DARK MATTER

ASTROPHYSICAL CONSTRAINTS

HIDDEN-PHOTONS AS DARK MATTER

A "hidden electric field" that penetrates shielding $-E' \approx \sqrt{\rho_{\text{DM}}} \approx 2000 \text{ V/m}$

Has fixed frequency

 $-\omega = m_{\gamma'}$, $\delta \omega / \omega = 10^{-6}$

Can excite an electromagnetic resonator

electromagnetic cavities

— ADMX is automatically sensitive! Arias et al 1201.5902

- cavity size restricts mass range

HIDDEN-PHOTONS AS DARK MATTER

A "hidden electric field" that penetrates shielding $-E' \approx \sqrt{\rho_{\text{DM}}} \approx 2000 \text{ V/m}$

Has fixed frequency

 $-\omega = m_{\gamma'}$, $\delta \omega / \omega = 10^{-6}$

Can excite an electromagnetic resonator

electromagnetic cavities

— ADMX is automatically sensitive! Arias et al 1201.5902

- cavity size restricts mass range

LC circuits

— can be high Q

 much wider and lower frequency range than cavities

EXPERIMENTAL SETUP

Metal box to shield backgrounds

(a radio)

THE SIGNAL INSIDE A SHIELD

THE SIGNAL INSIDE A SHIELD

Experiment to be done at Stanford over the next few years by K. Irwin's group

Currently writing experimental white paper

Graham, J.M., Rajendran & Zhao (theory) S. Chaudhuri & K. Irwin (experiment) in progress

REACH

LC oscillator search: Q~10⁶ size ~ 1m ~1 month scan per decade Stage I: room temp **Stage 2: T~0.1K** $\mathbf{f} = m_{\gamma'}/2\pi$ MHz THz Hz kHz GHz 0 Jupiter **Earth** -2Coulomb -4 CMB -6 **CROWS** $\log_{10} \varepsilon$ No Hidden-Photon DM -8 HB Sun -10 -12 Stage . -14 **Axion DM** search -16 Resonant LC circuit -18 ______ -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -5 -2-6 -4 -3 -1 0 $\log_{10} m_{\gamma'}$ [eV]

P. Graham, J.M., S. Rajendran, Y. Zhao, S. Chaudhuri & K. Irwin in progress

CONCLUSIONS

Hidden photons are a natural window into hidden sectors

- Ultra-light hidden photons are both:
 - new force carriers
 - a dark matter candidate

New ways to probe both aspects with small-scale experiments:

- Longitudinal mode greatly improves reach of cavity-to-cavity experiments
- Searches using LC circuits will be powerful probes of hidden-photon dark matter over a wide range of masses

Cavity-to-cavity searches already being pursued by several groups

LC-circuit dark matter search to be done at Stanford over next several years

BACKUP: GENERATING THE RELIC ABUNDANCE (preliminary)

GENERATING DM ABUNDANCE

Where did the hidden-photon abundance come from?

- One possibility (preliminary):
 - DM abundance generated purely from its gravitational coupling Hidden-photon longitudinal mode sourced by inflationary fluctuations Evolution automatically suppresses isocurvature fluctuations
 - BICEP-II $\longrightarrow \omega \sim 100 \text{ MHz}$
 - Lower infl. scale \longrightarrow larger mass

(WITH STUCKELBERG MASS)

Evolution of A' modes in expanding universe

(WITH STUCKELBERG MASS)

Evolution of A' longitudinal modes in expanding universe

(WITH STUCKELBERG MASS)

Evolution of A' longitudinal modes in expanding universe

(WITH STUCKELBERG MASS)

Evolution of A' longitudinal modes in expanding universe

REACH

P.Graham, J.M., S. Rajendran & Y. Zhao preliminary

(WITH STUCKELBERG MASS)

Evolution of A' longitudinal modes in expanding universe

