

Probing left-right seesaw in colliders R. N. Mohapatra

ACFI Neutrino workshop, July 2017

Why left-right seesaw?

Two basic ingredients of seesaw: (i) Right handed neutrinos (ii) Broken B-L symmetry

Both automatic in left-right models

If scale is in the TeV range,
 a plethora of experimental implications

Left-Right model: • Gauge group: $SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$

• Fermions $\begin{pmatrix} u_L \\ d_L \end{pmatrix} \stackrel{P}{\Leftrightarrow} \begin{pmatrix} u_R \\ d_R \end{pmatrix} \begin{pmatrix} v_L \\ e_L \end{pmatrix} \stackrel{P}{\Leftrightarrow} \begin{pmatrix} v_R \\ e_R \end{pmatrix}$

$$L = \frac{g}{2} [\vec{J}_{L}^{\ \mu} \cdot \vec{W}_{\mu L} + \vec{J}_{R}^{\ \mu} \cdot \vec{W}_{\mu R}]$$

Parity a spontaneously $M_{W_R} \gg M_{W_L}$ broken symmetry: (Pati, Salam'74; Mohapatra, Pati'74; '74; Senjanovic, Mohapatra'75)

Left-Right seesaw:

• Gauge group: $SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$ (needed for

• Fermions $(u_L) \xrightarrow{P} (u_R) (v_L) P$

$$\begin{pmatrix} u_L \\ d_L \end{pmatrix} \stackrel{P}{\Leftrightarrow} \begin{pmatrix} u_R \\ d_R \end{pmatrix} \begin{pmatrix} v_L \\ e_L \end{pmatrix} \stackrel{P}{\Leftrightarrow} \begin{pmatrix} v_R \\ e_R \end{pmatrix}$$

seesaw)

$$L = \frac{g}{2} [\vec{J}_{L}^{\ \mu} \cdot \vec{W}_{\mu L} + \vec{J}_{R}^{\ \mu} \cdot \vec{W}_{\mu R}]$$

Parity a spontaneously $M_{W_R} \gg M_{W_L}$ broken symmetry: (Pati, Salam'74; Mohapatra, Pati'74; 74; Senjanovic, Mohapatra'75)

Symmetry origin of Majorana Neutrinos

Electric charge formula:

$$Q = I_{3L} + I_{3R} + \frac{B - L}{2}$$

- Above EW scale, $\Delta Q = \Delta I_{3L} = 0 \ \rightarrow \Delta I_{3R} = -\frac{1}{2} \Delta L$

Parity breaking as origin of Majorana Neutrino mass

Electric charge formula in LR (contrast this with SM)

$$Q = I_{3L} + I_{3R} + \frac{B - L}{2}$$

Above EW scale, $\Delta Q = \Delta I_{3L} = 0 \rightarrow \Delta I_{3R} = -\frac{1}{2}\Delta L$ Parity breaking \rightarrow Majorana nu (RNM, Marshak'80)

Can type I seesaw scale be in the TeV range? Typically, $m_D = h_{\nu}v_{wk}$;

- So for $h_{\nu} \simeq 10^{-5.5} \sim h_e$; seesaw scale v_R could easily be in the TeV range and fit oscillation data;
- Hence $W_{R,} Z'$ accessible to colliders. $M_{W_R} = g_R v_R \sim {\rm fewTeV}$

 $m_{\nu} \simeq m_D (f v_R)^{-1} \mu (f v_R)^{-1} m_D^T$ (RNM'86; RNM, Valle'86)

Inverse seesaw more natural in LR; TeV scale.

Inverse seesaw and GUTs

Neutrino mass is determined by small mupper parameter $\rightarrow h_{\nu}$ can be >> 10^{-5.5} (could even be $\sim h_{t}$ allowing for quark lepton unification)

(Dev, RNM'10) TeV Inverse seesaw embeddable in GUTs *unlike TeV scale type I.*

Allows collider probes of seesaw

 \blacksquare Large lepton flavor violation $\mu \rightarrow e + \gamma, \mu \rightarrow e$

• Large lepton number violating processes $\beta\beta_{0\nu}$

Collider signals for TeV scale LR type I seesaw

- Vector boson signal: W_R, Z' (M~TeVs)
- New fermion signal: N_{e,mu,tau} (M~GeV-TeV)
- Scalar boson signal: analog of SM Higgs

Vector Bosons:

Vector boson signal: How light can W_R Be?

■ New interactions of quarks with W_R affects low energy observables e.g. K_L-K_S, ϵ , ϵ' , B_s-B_{s-bar}, \rightarrow M_{WR} > 2.5 TeV (g_R /g_L)

(Zhang,An,Ji,RNM; Maiezza, Nemevsek,Nesti,Senjanovic;Blanke, Buras,Gemmler,Hiedsieck; Maiezza, Nemevsek)

• Resolving ϵ'/ϵ puzzle \rightarrow TeV W_R (Cirigliano, Dekens, de Vries, Mereghetti'16)

Collider signals of LR seesaw (Type I) • Golden channel: $W_R \rightarrow \ell_i \ell_k j j$ (Two sources) ■ W_R mediates graph (Keung, Senjanovic'82) $\sigma(W_R) \times BR(Ne) \sim 14.8$ fb $M_{WP} = 3 \text{ TeV}$ Predicts $f^{\pm}\ell^{\pm}$ $= \# \ell$ $A_{\ell_i \ell_j j j} \propto M_{N,ij}$ and

• What if $\#\ell^{\pm}\ell^{\pm} \neq \#\ell^{\pm}\ell^{\mp}$? • One resolution: General inverse seesaw $\begin{pmatrix} 0 & h\kappa & 0 \\ h\kappa & M_N & fv_R \\ 0 & fv_R & \mu \end{pmatrix} \quad M_N \sim fv_R$

Neutrino mass is still tiny but collider signal diff.

(Dev, RNM; Aniamati, Hirsch, Nardi)

Second resolution: CPV in N-decay: (Gluza, Jelinski)

Current LHC searches

- 0.1 $M_{WR} < M_N < M_{WR}$;
- Leptons, jets clearly separated
- Look for bumps in $\ell \ell j j$ inv. Mass
 $p_T > 60 \text{ GeV}$ for one lepton
 - $p_T > 40 \text{ GeV}$ for the other
 - and also for jets (CMS)

Current limit from LHC

Current limit from dijet data: 2.8 TeV(g_L = g_R)
 LHC14 reach 5-6 TeV

g_L = g_R depends on scale of P breaking

- In general if P-breaking takes place at a higher scale than $SU(2)_R$ breaking, $g_R < g_L$ (Chang, RNM, Parida'84)
- Important because this allows W_R to be lighter than apparent collider and FCNC limits;

• How low can g_R be? Theoretical lower bound: $g_R > 0.66 g_L$

(Brehmer, Hewett, Rizzo, Kopp, Tattersel'14; Dev, RNM, Zhang'16)

ATLAS/CMS sensitivities break down

 $M_{N} < 0.1 M_{WR}$

(Mitra, Ruiz, Scott, Spanowsky'16)

 Use neutrino jets instead to recover lost sensitivity §

Signature: $pp \rightarrow \ell^{\pm} + j_{\text{Fat}} + X$

Other contributions in LR

- Golden channel: $W_R \rightarrow \ell_i \ell_k j j$ (second source)
- Heavy light mixing W_L (RL)
 mediated (Chen, Dev, RNM'13)

$$q\bar{q} \to W_R \to \ell + N;$$

 $N \to \ell W_L$

Measures M_D

Limits on Z_R Boson from LHC

• $W_R - Z'$ mass relation a test of LR ($g_L = g_R$)

$$M_{Z_2} = \sqrt{\frac{2\cos^2\theta_W}{\cos^2\theta_W}} M_{W_R}$$
 Type I $M_{Z_2} = \sqrt{\frac{\cos^2\theta_W}{\cos^2\theta_W}} M_{W_R}$ Inverse

Like sign dileptons signal same as in LR case:

♣But SM signal unobservable since $\frac{V_{\ell N}}{V_{\ell N}} \simeq \sqrt{\frac{m_{\nu}}{M_N}}$

<

♦ Current reach at LHC ~ 10^{-3}

$\ell^{\pm}\ell^{\pm}jj$ signal with enhanced $V_{\ell N}$ in SM seesaw?

- There have been attempts to build type I extensions of SM models where $V_{\ell N}$ is much larger!
- Conjecture: they will likely not increase the production rate in the mass range $M_W << M_{N,}$ where $A_{\ell\ell jj} \propto m_D M_N^{-1} m_D$ and hence small due to type I seesaw formula !!
- If true, observation of $\ell^{\pm}\ell^{\pm}jj$ could point to existence of W_R (?).

Signal of minimal inverse seesaw (ISS)

$$\begin{pmatrix} 0 & h\kappa & 0 \\ h\kappa & 0 & fv_R \\ 0 & fv_R & \mu \end{pmatrix} \quad M_N \sim fv_R$$

Neutrino mass is still tiny but collider signal diff. trilepton and L-conserving.

(Chen, Dev'11; Das and Okada'12)

New fermions: N_{1,2,3}

Theoretical upper limit on M_N

Like the top quark in the SM, very large RHN mass will destabilize the vacuum. This gives an upper limit on:

(RNM, PRD'86)

High mass range~0.1-1 TeV M_N < M_{WR}

• Life time very short- Look for invariant mass of $\ell j j$ system

light N: possible displaced vertex searches at LHC

(Helo, Hirsch, Dev, RNM, Zhang (@LHC))

SHIP Experiment- light N

Scalars

New heavy neutral Higgs

- LR is a two Higgs doublet model with the second Higgs coupling related to the SM Higgs by parity:
- They have FCNH couplings which imply

$$H_1^0, A^0; \quad M_{H_1^0, A^0} \ge 10 \text{ TeV}$$

Need higher energy colliders (HE-LHC, 100 TeV...) signature decay $H_1^0 \rightarrow b\bar{b}$

Seesaw related Higgs:Doubly charged scalars

CMS

Benchmark	AP [GeV]	PP [GeV]	Combined [GeV]
$100\% \ \Phi^{\pm\pm} ightarrow \mathrm{ee}$	734 (720)	652 (639)	800 (785)
$100\% \ \Phi^{\pm\pm} ightarrow \mathrm{e}\mu$	750 (729)	665 (660)	820 (810)
$100\% \Phi^{\pm\pm} \rightarrow \mu\mu$	746 (774)	712 (712)	816 (843)
$100\% \ \Phi^{\pm\pm} ightarrow { m e} au$	568 (582)	481 (543)	714 (658)
$100\% \Phi^{\pm\pm} ightarrow \mu au$	518 (613)	537 (591)	643 (708)
$100\% \Phi^{\pm\pm} \to \tau\tau$	479 (483)	396 (419)	535 (544)

Neutral scalars : several

Neutral Seesaw Higgs
$$H_3^0 \equiv Re\Delta_R^0$$
 $M_{H_3^0} \simeq 1 - 1000 \text{GeV}$

- Three domains of B-L breaking Higgs Δ^0_R masses (M_{H3})
- $M_{H3} \sim V_R >> M_h \rightarrow$ (Maiezza, Nemevsek, Nesti'15;Dev, RNM, Zhang'16)
- $M_{H3} << v_R \sim M_h$

 \blacksquare $M_{H3} << M_h << v_R$ (~ few GeV to 100 MeV) (Dev, RNM, Zhang'17)

Rare decays of SM Higgs from seesaw

 Displaced vertices at LHC

 $\sqrt{s} = 13 \text{ TeV}$ $\mathcal{L} = 100 \text{ fb}^{-1}$ 70 60 $\sin\theta = 10\%$ $\sin\theta = 40\%$ 50 40 Och n_N in GeV 30 5σ 3σ 2σ 20 S. $M_{W_{-}} = 10 \, \text{TeV}$ 0.3 15 0.2 $5\sigma M_{W_D} = 3 \text{ TeV}$ W search 0.1 10 1.5 2 3 5 7 10 15 20 $M_{W_{P}}$ in TeV

(Maiezza, Nemevsek, Nesti'15; Miha's talk; However, similar decay for SM seesaw: Lopez-Pavon et al'17)

Light H₃ (0.1-10 GeV) and displaced vertices

- Motivation for light Higgs H₃
- H₃ analog of SM Higgs- connected to B-L breaking.
- If SU(2)_R x U(1)_{B-L} is broken radiatively, there is a good chance that $H_3^0 \equiv Re\Delta_R^0$ is light:

$$\left(m_{H_3}^2\right)^{
m loop} \simeq rac{3}{2\pi^2} \left[rac{1}{3}lpha_3^2 + rac{8}{3}
ho_2^2 - 8f^4 + rac{1}{2}g_R^4 + (g_R^2 + g_{BL}^2)^2
ight] v_R^2$$

⁽Dev, RNM, Yongchao Zhang, PRD'17; 1703.02471)

Reason for displaced vertices:FCNC constraints:

• H_3 is a linear combination of SM Higgs h and LR new Higgs $H_1(\theta_1, \theta_2)$ and has effective quark coupling of the form:

 $\begin{array}{ll} H_{3}\bar{u}u & \frac{1}{\sqrt{2}}\widehat{Y}_{U}\sin\tilde{\theta}_{1} - \frac{1}{\sqrt{2}}\left(V_{L}\widehat{Y}_{D}V_{R}^{\dagger}\right)\sin\tilde{\theta}_{2} \\ H_{3}\bar{d}d & \frac{1}{\sqrt{2}}\widehat{Y}_{D}\sin\tilde{\theta}_{1} - \frac{1}{\sqrt{2}}\left(V_{L}^{\dagger}\widehat{Y}_{U}V_{R}\right)\sin\tilde{\theta}_{2} \\ & \sin\tilde{\theta}_{2} = \sin\theta_{2} + \xi\sin\theta_{1} \end{array}$

 For light H₃, B and K-decays limit the value of mixing angles (barring cancellation)

FCNC Processes:

• Expts: For B decays:

 $\begin{array}{ll} B \to K\ell^+\ell^- : & \text{BaBar ['03], Belle ['09], LHCb ['12]} \\ B \to K\nu\bar{\nu} : & \text{BaBar ['13], Belle II (prospects)} \\ B_s \to \mu^+\mu^- : & \text{LHCb ['17]} \\ B_{d(s)} \to \gamma\gamma : & \text{BaBar (Belle) ['10 ('14)]} \\ \Upsilon \to \gamma H_3 : & \text{BaBar ['11]} \end{array}$

Constraints on H₃ mixings from B-decays (Babar, Belle, LHCb)

Mixing with SM Higgs and heavy LR Higgs H⁰ (θ_1, θ_2) are strongly constrained for m~GeV;

(Dev, RNM, Zhang'16-17)

How does light H₃ decay?

- H₃ decay to quarks and leptons suppressed by FCNC constraints.
- Dominant decay mode is $\gamma\gamma$
- Very unique to LR models

 Different from any other BSM light scalar (e.g. multi Higgs or NMSSM) which will decay predominantly to leptons and jets since its mixing with *h* is not suppressed as in LR.

Light H₃ production at LHC14

$\gamma\gamma$ Displaced vertices at LHC: W_R –H₃ reach

Near GeV mass H_3^0 accessible at the LHC via displaced vertices ($\gamma\gamma$ mode 100% BR)

(Dev, RNM, Yongchao Zhang'16)

- $\gamma\gamma$ mode typical of left-right seesaw
- Gammas highly collimated: *challenging*

Light H₃ at 100 TeV collider

Future reach for type I LR seesaw

Summary

- Left-Right theory with TeV scale seesaw: a compelling scenarios for neutrino masses:
 Rich set of predictions for colliders and low energies: (W_R, Z', N, Δ⁺⁺_R, ββ_{0ν} etc)
- Probe of light seesaw Higgs (analog of SM h) using displaced vertices- a new way to understand seesaw mechanism!
- LHC can broaden our understanding of nu mass origin based on LR seesaw significantly!!

Low energy effects:(i) $\beta\beta_{0\nu}$ in LR seesaw (Type I)

Predictions for a LR with type II seesaw

(Tello, Nemevsek, Senjanovic, Nesti, Vissani'10; Ge, Lindner, Patra'2015; Dev, Goswami, Mitra, Rodejohann'2013)

Take away lessons

- Observation of $\beta\beta_{0\nu}$ at the level of 20 to 30 meV does not mean inverse hierarchycould be W_R effect.
- Suppose long base line → NH, any signal of $\beta\beta_{0\nu}$ at this level would strongly imply new particle effect e.g. WR.
- Must find ways to disentangle heavy particle effects from light nu exchange

Bigger $V_{\ell N}$ **Low energy test** of **Inverse seesaw**

 Low energies: Observable departure from PMNS unitarity for ISS. (η can be close to limit)

(Fernandez, Garcia, Lopez-Pavon, Vicente'15; Antusch, Fischer'14, Abada et al'07)

Current bounds: (LFV etc)

$$\eta < \begin{pmatrix} 0.9979 - 0.9998 & < 10^{-5} & < 0.0021 \\ < 10^{-5} & 0.9996 - 1.0 & < 0.0008 \\ < 0.0021 & < 0.0008 & 0.9947 - 1.0 \end{pmatrix}$$

(Antusch, Fischer)

Heavy neutrino poduction in SM: $\sigma(pp \to W^* \to l_{\alpha}^{\pm} + N_k) \propto |U_{\alpha k}|^2 \sigma_0$

> this plot from: Atre et al, JHEP 0905 (2009) 030

Beyond minimal left-right seesaw and a second neutral Higgs@LHC

An LHC accessible second Higgs in LR?

- LR is a natural 2 Higgs doublet model.
- Parity fixes the coupling of 2nd Higgs to quarks.
 In minimal LR, this leads to large FCNC effects and implies →M_{H1} > 10 TeV
- It is possible to extend the model so that it gives effective LR near few TeV and FCNC constraints become weaker→

 M_{H1} < few TeV.

Dominant decay mode different from minimal LR!