# Higgs Physics - current status and future prospects

Higgs physics at the LHC Higgs physics at the CEPC

**Jianming Qian** (University of Michigan)

ACFI workshop, Amherst, September 17-19, 2015

### **Higgs Productions and Decays**



Over 1,000,000 Higgs bosons produced at LHC so far  $\Rightarrow$  Higgs factory !

### **Status at a Glance**

A long way since the discovery. 88% of the Higgs boson decays have been studied...



Observed (expected) significance

| Decay Mode           | $h  ightarrow \gamma \gamma$ | $h \to Z Z^*$ | $h \to WW^*$ | $h \to \tau \tau$ | $h \rightarrow bb$ |
|----------------------|------------------------------|---------------|--------------|-------------------|--------------------|
| ATLAS                | 5.0(4.6)                     | 6.6(5.5)      | 6.8(5.8)     | 4.4(3.3)          | 1.7(2.7)           |
| $\operatorname{CMS}$ | 5.7(5.1)                     | 7.0(6.8)      | 4.8(5.6)     | 3.4(3.7)          | 2.0(2.5)           |

Discovery-level significances in three bosonic decay modes; Weakest signal in  $H \rightarrow bb$ , the decay mode with the largest BR !

### **ATLAS and CMS Combination**

Combining measurements in  $H \rightarrow \gamma \gamma$  and  $H \rightarrow ZZ^* \rightarrow 4\ell$ taking into account correlations of uncertainties



arXiv:1503.07589

### **Indirect Width Measurement**



### **Indirect Width Measurements**

The key issue is to extract the  $gg \rightarrow H^* \rightarrow VV$  signal from the  $gg \rightarrow VV$  background. Assumptions are made about the  $gg \rightarrow VV$  cross section.



Assuming  $K(gg \rightarrow VV) = K(gg \rightarrow H^* \rightarrow VV)$ , the observed (expected) 95% CL limits:  $\Gamma_H < 22.7 (33.0) \text{ MeV } [ATLAS]; \Gamma_H < 22 (28.0) \text{ MeV } [CMS]$ 

### **Spin/CP Tests**

arXiv:1411.3441 (CMS)

Higgs decay kinematics depends on its pro of spin and parity.  $H \rightarrow \gamma\gamma$ ,  $H \rightarrow ZZ^* \rightarrow 4\ell$  a  $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$  final states have been a to determine these properties.



19.7 fb<sup>-1</sup> (8 TeV) + 5.1 fb<sup>-1</sup> (7 TeV)  $H \rightarrow ZZ$ CMS 120 - Observed ..... Expected  $2 \times \ln(L_{J^{e}} / L_{0^{+}})$ 100  $0^+ \pm 1\sigma$ + 1σ  $0^{+} \pm 2\sigma$  $\pm 2\sigma$ 80  $\pm 3\sigma$  $0^+ \pm 3\sigma$ 60 40 20 0 -20 -40 -60 ag production ag production decay-only discriminants

SM prediction of J<sup>p</sup>=0<sup>+</sup> is strongly favored, most alternatives studied are excluded @ 95% CL or higher

## **Differential Distributions**

Going beyond inclusive distributions, study kinematics of candidate events.



Reasonable agreements between data and the SM expectations, need to watch out a few distributions with more statistics....



### **Signal Strengths and Couplings**



With the current precision, the production rates agree with the SM prediction and the Higgs boson couples to fermions and vector bosons as expected.

### **Constraints on the Heavy Higgs Boson**

The mixing of  $H_{SM}$  and S leads to the modifications  $(\kappa^2 = \cos^2 \theta \text{ and } \kappa'^2 = \sin^2 \theta)$ 

$$\sigma_{h} = \kappa^{2} \times \sigma_{h}^{SM}, \qquad \Gamma_{h} = \kappa^{2} \times \Gamma_{h}^{SM}, \qquad \mathsf{BR}_{h} = \mathsf{BR}_{h}^{SM}, \\ \sigma_{H} = \kappa^{2} \times \sigma_{H}^{SM}, \qquad \Gamma_{H} = \frac{\kappa^{2}}{1 - \mathsf{BR}_{new}} \times \Gamma_{H}^{SM}, \qquad \mathsf{BR}_{H} = (1 - \mathsf{BR}_{new}) \times \mathsf{BR}_{H}^{SM}$$

The measurement of the light Higgs boson can constrain the heavy Higgs boson:



independent of the mass of the heavy Higgs boson  $m_{H}$ .

### **Constraints on 2HDM**

Assuming no change in Higgs decay kinematics and no new production process, the measured rates of h(125) can be turned into constraints on the two 2HDM parameters:  $\alpha$  and  $\beta$ 



## **BR**<sub>inv</sub> from direct and indirect constraints

Assuming  $BR_{NEW} = BR_{inv}$ , i.e., all new decays are invisible decays, constraints from: - the rate measurements:  $BR_{inv} < 0.49$  for  $\kappa_V \le 1$ ; - the direct searches:  $BR_{inv} < 0.25$ 



Combining the direct searches with the indirect (rate measurements) in the most general model:  $\kappa_w$ ,  $\kappa_z$ ,  $\kappa_t$ ,  $\kappa_b$ ,  $\kappa_\tau$ ,  $\kappa_\mu$ ,  $\kappa_g$ ,  $\kappa_\gamma$ ,  $\kappa_{Z\gamma}$ ,  $BR_{inv}$  with

The total Higgs boson width

$$\Gamma_h = \frac{\kappa_h^2 \cdot \Gamma_h^{SM}}{1 - BR_{inv}}$$

$$BR_{inv} < 23\% (24\%)$$
 at 95% CL

### Searches for $H \rightarrow \mu \tau$ Decay

CMS:  $\tau$  decay final states considered:  $\tau \rightarrow e$ ,  $\tau \rightarrow hadrons$ , categorization according to number of jets: 0, 1 and 2 jets



An excess with a significance of 2.4 $\sigma$  is observed, corresponding to  $BR(H \rightarrow \mu \tau) = (0.84^{+0.39}_{-0.37})\%$ 

ATLAS result from  $H \rightarrow \mu \tau \rightarrow \mu \tau_{had}$ : BR $(H \rightarrow \mu \tau) = (0.77 \pm 0.62)\%$ .

Consistent with both null and the CMS result, more information is needed...

### **Higgs Boson Pair Production**

Non-resonant production offers a direct probe of the Higgs boson self-coupling, but the rates are low and backgrounds are high



### **Higgs Boson Pair Production**

Resonant production:  $H \rightarrow hh$ 

 $bb\gamma\gamma$  and  $bb\tau\tau$  have comparable sensitivities at low mass, bbbb dominates at high mass





### **hMSSM Scenario**



### **Coupling Projections**

Many studies done for US Snowmass process, Europe ECFA studies.

![](_page_16_Figure_2.jpeg)

![](_page_16_Figure_3.jpeg)

(Based on parametric simulation)

Even with the projected precisions at HL-LHC, the couplings are not expected to be constrained better than  $\sim$  5%.

### **Case for a Precision Higgs Program**

How large are potential deviations from BSM physics? How well do we need to measure them to be sensitive?

To be sensitive to a deviation  $\Delta$ , the measurement precision needs to be much better than  $\Delta$ , at least  $\Delta/3$  and preferably  $\Delta/5$ !

Since the couplings of the 125 GeV Higgs boson are found to be very close to SM  $\Rightarrow$  deviations from BSM physics must be small.

Typical effect on coupling from heavy state M or new physics at scale M:

$$\Delta \sim \left(\frac{\upsilon}{M}\right)^2 \sim 6\% @ M \sim 1 \text{ TeV}$$

(Han et al., hep-ph/0302188, Gupta et al. arXiv:1206.3560, ...)

#### MSSM decoupling limit

 $\Delta$  at sub-percent to a few percent, will be challenging to distinguish the MSSM decoupling limit from the SM in the case of no direct discovery.

$$\frac{g_{hVV}}{g_{h_{\rm SM}VV}} \simeq 1 - 0.3\% \left(\frac{200 \text{ GeV}}{m_A}\right)^4$$
$$\frac{g_{htt}}{g_{h_{\rm SM}tt}} = \frac{g_{hcc}}{g_{h_{\rm SM}cc}} \simeq 1 - 1.7\% \left(\frac{200 \text{ GeV}}{m_A}\right)^2$$
$$\frac{g_{hbb}}{g_{h_{\rm SM}bb}} = \frac{g_{h\tau\tau}}{g_{h_{\rm SM}\tau\tau}} \simeq 1 + 40\% \left(\frac{200 \text{ GeV}}{m_A}\right)^2.$$

(ILC DBDPhysics)

 $\Rightarrow$  Need percent-level or better measurements!

### e<sup>+</sup>e<sup>-</sup> Collider

#### **Electroweak production**

cross sections are predicted with (sub)percent level precisions in most cases

#### Relative low rate

can trigger on every event

Well defined collision energy allow for the "missing" mass reconstruction (eg recoiling mass)

Clean events, smaller background small number of processes

Ideal for precisions: measurements or searches

![](_page_18_Figure_8.jpeg)

### **Higgs Boson Production**

At  $\sqrt{s} \sim 240-250$  GeV,  $ee \rightarrow ZH$  production is maximum and dominates with a smaller contribution from  $ee \rightarrow vvH$ .

Beyond that, the cross section decreases asymptotically as 1/s for  $ee \rightarrow ZH$  and increases logarithmically for  $ee \rightarrow vvH$ .

![](_page_19_Figure_3.jpeg)

### **Cross Sections and Event Rates**

### 5 $ab^{-1}$ @ $\sqrt{s} = 250 \text{ GeV}$

| Process                                     | Cross section | Events in 5 $ab^{-1}$ |  |  |  |  |  |
|---------------------------------------------|---------------|-----------------------|--|--|--|--|--|
| Higgs boson production, cross section in fb |               |                       |  |  |  |  |  |
| $e^+e^- \rightarrow ZH$                     | 212           | $1.06 	imes 10^6$     |  |  |  |  |  |
| $e^+e^- \rightarrow \nu \bar{\nu} H$        | 6.72          | $3.36	imes10^4$       |  |  |  |  |  |
| $e^+e^- \rightarrow e^+e^-H$                | 0.63          | $3.15 	imes 10^3$     |  |  |  |  |  |
| Total                                       | 219           | $1.10 	imes 10^6$     |  |  |  |  |  |

Background processes, cross section in pb

| $e^+e^- \rightarrow e^+e^-$ (Bhabha)                                               | 25.1 | $1.3	imes10^8$   |
|------------------------------------------------------------------------------------|------|------------------|
| $e^+e^- \to q\bar{q}\left(\gamma\right)$                                           | 50.2 | $2.5 	imes 10^8$ |
| $e^+e^- \rightarrow \mu^+\mu^-(\gamma) \text{ [or } \tau^+\tau^-(\gamma) \text{]}$ | 4.40 | $2.2 	imes 10^7$ |
| $e^+e^- \to WW$                                                                    | 15.4 | $7.7	imes10^7$   |
| $e^+e^- \rightarrow ZZ$                                                            | 1.03 | $5.2 	imes 10^6$ |
| $e^+e^- \rightarrow e^+e^-Z$                                                       | 4.73 | $2.4	imes10^7$   |
| $e^+e^- \rightarrow e^+ \nu W^- / e^- \bar{\nu} W^+$                               | 5.14 | $2.6	imes10^7$   |

>1,000,000 Higgs boson events

### **Recoil Mass Distributions**

Unique to lepton colliders, the energy and momentum of the Higgs boson in  $ee \rightarrow ZH$  can be measured by looking at the Z kinematics only.

![](_page_21_Figure_2.jpeg)

Recoil mass reconstruction:

$$m_{\rm recoil}^2 = \left(\sqrt{s} - E_Z\right)^2 - \left|\vec{p}_Z\right|^2$$

 $\Rightarrow$  identify Higgs without looking at Higgs.

Measure  $\sigma(ee \rightarrow ZH)$  independent of the Higgs boson decay !

### **Mass and Cross Section**

The Higgs boson mass and the  $ee \rightarrow ZH$  cross section can be extracted from the recoil mass spectra:

resonance peak  $\approx M_{H}$ , resonance height  $\sim \sigma(ee \rightarrow ZH)$ 

![](_page_22_Figure_3.jpeg)

 $\Delta M_{\mu} \sim 5.5 \text{ MeV}$ 

from leptonic decays Z  $\rightarrow$  ee,  $\mu\mu$ (resolution important)

 $\Delta \sigma_{_{ZH}}/\sigma_{_{ZH}} \sim 0.5\%$ from Z  $\rightarrow$  ee,  $\mu\mu$  and qq decays (statistics important)

150

### **Accessible Decay Modes**

Higgs boson decays can be studied by examining the system recoiling against the Z boson decays

| SM decay                     |                      | Accessible?            |                 |  |
|------------------------------|----------------------|------------------------|-----------------|--|
| mode                         | branching ratio      | (HL-)LHC               | Higgs factories |  |
| $H \rightarrow bb$           | 57.7%                | $\checkmark, \times$ * | $\checkmark$    |  |
| H  ightarrow gg              | 8.57%                | ×                      | $\checkmark$    |  |
| $H \rightarrow cc$           | 2.91%                | ×                      | $\checkmark$    |  |
| $H \rightarrow ss$           | $2.46 	imes 10^{-4}$ | ×                      | ?               |  |
| $H \to \tau \tau$            | 6.32%                | $\checkmark$           | $\checkmark$    |  |
| $H  ightarrow \mu \mu$       | $2.19 	imes 10^{-4}$ | $\checkmark$           | $\checkmark$    |  |
| $H \to WW$                   | 21.5%                | $\checkmark$           | $\checkmark$    |  |
| $H \to ZZ$                   | 2.64%                | $\checkmark$           | $\checkmark$    |  |
| $H  ightarrow \gamma \gamma$ | 0.23%                | $\checkmark$           | $\checkmark$    |  |
| $H \to Z\gamma$              | 0.15%                | $\checkmark$           | $\checkmark$    |  |

\* Not all production mode.

Limitations: statistics even with 1 million events At HL-LHC: trigger and systematics CEPC will be sensitive to unknown Higgs boson decays

### **Branching Ratios**

Examining the rest of the events to study Higgs boson decays and measure

$$\sigma(ee \to ZH) \times BR(H \to XX)$$

thus allowing the measurements of Higgs decay BR without assumptions.

![](_page_24_Figure_4.jpeg)

#### $H \rightarrow hadrons$

Apply flavor tagging to separate  $H \rightarrow bb$ , cc, gg

![](_page_24_Figure_7.jpeg)

### **Total Decay Width**

The SM predicted value of  $\Gamma_{H} \sim 4$  MeV is much smaller than the experimental resolution ( $\sim \text{GeV}$ ) of the recoil mass  $\Rightarrow$  cannot measured directly with a reasonable precision.

The Higgs total width can be inferred from the cross section and branching ratio measurements in a model-independent way. Two independent measurements:

$$\sigma(ee \to ZH): \quad \Gamma_{H} = \frac{\Gamma(H \to ZZ^{*})}{BR(H \to ZZ^{*})} \propto \frac{\sigma(ee \to ZH)}{BR(H \to ZZ^{*})}$$
(Limited by the  $H \to ZZ^{*}$  statistics)

$$\sigma(ee \to vvH \to vvbb): \quad \Gamma_{H} = \frac{\Gamma(H \to bb)}{BR(H \to bb)} \propto \frac{\sigma(ee \to vvH \to vvbb)}{BR(H \to bb) \bullet BR(H \to WW^{*})}$$
(Limited by the  $ee \to vvH \to vvbb$  statistics)

### **Summary of Measurement Precision**

| $\Delta m_H$             | $\Gamma_H$ | $\sigma(ZH)$           | $\sigma(\nu\bar{\nu}H)\times \mathrm{BR}(H\to b\bar{b})$ |
|--------------------------|------------|------------------------|----------------------------------------------------------|
| $5.9 { m MeV}$           | 2.8%       | 0.51%                  | 2.8%                                                     |
|                          |            |                        |                                                          |
| Decay mode               |            | $\sigma(ZH) \times BR$ | BR                                                       |
| $H \rightarrow b\bar{b}$ |            | 0.28%                  | 0.57%                                                    |
| $H \to c\bar{c}$         |            | 2.2%                   | 2.3%                                                     |
| $H \rightarrow gg$       |            | 1.6%                   | 1.7%                                                     |
| $H \to \tau^+ \tau^-$    |            | 1.2%                   | 1.3%                                                     |
| $H \to WW^*$             |            | 1.5%                   | 1.6%                                                     |
| $H \to Z Z^*$            |            | 4.3%                   | 4.3%                                                     |
| $H \to \gamma \gamma$    |            | 9.0%                   | 9.0%                                                     |
| $H \to \mu^+ \mu^-$      |            | 17%                    | 17%                                                      |
| $H \to inv$              |            | _                      | 0.28%                                                    |

95% CL upper limit is quoted for  $H \rightarrow inv$  decay

### **Coupling Fit Models**

Most general model: one modifier per observable Higgs coupling

With  $\sim 10^6$  events, the Higgs factories will be able to explore Higgs couplings to 9 fundamental particles in SM

- No direct access to *Htt* coupling at  $\sqrt{s} \sim 240 250$  GeV, sensitivity through the  $H \rightarrow gg$  loop
- + sensitive BSM H  $\rightarrow$  invisible decay

![](_page_27_Figure_5.jpeg)

Model-independent coupling fit: 10 parameter

 $\kappa_b, \kappa_c, \kappa_{\tau}, \kappa_{\mu}, \kappa_Z, \kappa_W, \kappa_{\gamma}, \kappa_g, BR_{inv}, \Gamma_h$ 

![](_page_27_Picture_8.jpeg)

### **Results of the 10-Parameter Fit**

![](_page_28_Figure_1.jpeg)

### **Comparisons with LHC**

Fully model-independent fit is not possible at the LHC

### 7-parameter model:

$$\kappa_c$$
,  $\kappa_b$ ,  $\kappa_\ell$ ,  $\kappa_W$ ,  $\kappa_Z$ ,  $\kappa_g$ ,  $\kappa_\gamma$ 

Assumptions: no BSM decays up-type quarks:  $\kappa_u = \kappa_c = \kappa_t$ down-type quarks:  $\kappa_d = \kappa_s = \kappa_b$ charged leptons:  $\kappa_e = \kappa_\mu = \kappa_\tau$ 

![](_page_29_Figure_5.jpeg)

HL-LHC: ATL-PHYS-PUB-2014-016

### **Results of Coupling Fits**

| Expected precisions of coupling fits |                     |                      |                        |                                |  |  |  |
|--------------------------------------|---------------------|----------------------|------------------------|--------------------------------|--|--|--|
| Proposed Facility                    | CEPC 250 [1]        | TLEP 240 [2]         | ILC 250 [2]            | ILC 250+500 [2]                |  |  |  |
| $\int \mathcal{L} dt$                | $5 \ {\rm ab}^{-1}$ | $10 \ {\rm ab^{-1}}$ | $0.25 \text{ ab}^{-1}$ | $0.25 \pm 0.5 \text{ ab}^{-1}$ |  |  |  |
| $\Gamma_H$                           | 2.8%                | 1.9%                 | 12%                    | 5.0%                           |  |  |  |
|                                      |                     |                      |                        |                                |  |  |  |
| $\kappa_b$                           | 1.3%                | 0.88%                | 5.3%                   | 1.7%                           |  |  |  |
| $\kappa_c$                           | 1.7%                | 1.0%                 | 6.8%                   | 2.8%                           |  |  |  |
| $\kappa_{	au}$                       | 1.4%                | 0.94%                | 5.7%                   | 2.4%                           |  |  |  |
| $\kappa_{\mu}$                       | 8.6%                | 6.4%                 | 91%                    | 91%                            |  |  |  |
| $\kappa_W$                           | 1.2%                | 0.85%                | 4.8%                   | 1.2%                           |  |  |  |
| $\kappa_Z$                           | 0.25%               | 0.16%                | 1.3%                   | 1.0%                           |  |  |  |
| $\kappa_{g}$                         | 1.5%                | 1.1%                 | 6.4%                   | 2.3%                           |  |  |  |
| $\kappa_{\gamma}$                    | 4.7%                | 1.7%                 | 18%                    | 8.4%                           |  |  |  |
|                                      | 95                  | % CL upper limit     |                        |                                |  |  |  |
| $BR(H \to inv)$                      | 0.28%               | 0.19%                | 0.9%                   | 0.9%                           |  |  |  |
| [1] Very preliminary                 | · [2] arXiv:1310.83 | 61 (Snowmass repo    | rt)                    |                                |  |  |  |

very premimary, [2] arAiv.1310.0301 (Showmass report). 11

#### Percent-level or better precision for many couplings

### **Higgs Boson Self-Coupling**

No Higgs boson pair production at the CEPC

- $\Rightarrow$  no direct probe of the self-coupling
- However,  $\lambda(hhh)$  coupling affects the *hZZ* coupling at 1-loop level  $\Rightarrow$  indirect measurement McCullough, arXiv:1312.3322

![](_page_31_Figure_4.jpeg)

### **Impacts on Example BSM Models**

#### Scalar top partner model

Generic singlet model

![](_page_32_Figure_3.jpeg)

![](_page_32_Figure_4.jpeg)

Profumo et al., arXiv:1407.5342

Craig et al., arXiv:1305.5251

### **Summary**

The current precision on the Higgs boson coupling measurements at the LHC is at 10-20% level, HL-LHC can improve the precision to ~5% for some couplings. Moreover, LHC has the potential to discover additional Higgs states.

A lepton collider Higgs factory is complement of the LHC. It allows for model-independent measurements of the Higgs boson properties and can significantly improve their precision.

The CEPC (FCC-ee) has the potential to "undress" the Higgs boson as what LEP has done to the Z boson, and possibly shed light on the direction of new physics. The SPPC complements the CEPC and will significantly extend the discovery reach.

![](_page_33_Figure_4.jpeg)

## **Coupling Comparison (Snowmass)**

ILC projections are from Tim Barklow. The rest is mostly taken from the presentation by Patrick Janot at the BNL workshop. The LHC numbers are *per experiment* (unless noted) of CMS projections of two scenarios of systematics assumptions.

| Facility                                    | LHC                     | HL-LHC                  | ILC    | Full ILC          | CLIC             | LEP3 $(4 \text{ IP})$ | TLEP $(4 \text{ IP})$ |
|---------------------------------------------|-------------------------|-------------------------|--------|-------------------|------------------|-----------------------|-----------------------|
| Energy (GeV)                                | 14,000                  | 14,000                  | 250    | 250 + 500 + 1000  | 350 + 500 + 1500 | 240                   | 240 + 350             |
| $\int \mathcal{L} dt \; (\mathrm{fb}^{-1})$ | 300/expt                | 3000/expt               | 250    | 250 + 500 + 1000  | 500 + 500 + 1500 | 2000                  | 10000 + 1400          |
| $N_H$ produced                              | $1.7 	imes 10^7$        | $1.7 	imes 10^8$        | 80,000 | 370,000           | 618,000          | 600,000               | 3,200,000             |
|                                             |                         |                         |        |                   |                  |                       |                       |
|                                             |                         |                         | Measu  | urement precision |                  |                       |                       |
| $m_H ~({ m MeV})$                           | 100                     | 50                      | 35     | 35                | 70               | 26                    | 7                     |
| $\Delta\Gamma_H$                            | —                       | _                       | 11%    | 6%                | 6%               | 4%                    | 1.3%                  |
| $BR_{inv}$                                  | NA                      | NA                      | < 0.8% | $<\!0.8\%$        | NA               | $<\!0.7\%$            | $<\!0.3\%$            |
|                                             |                         |                         |        |                   |                  |                       |                       |
| $\Delta g_{H\gamma\gamma}$                  | 5.1 - 6.5%              | 1.5 - 5.4%              | 18%    | 4.1%              | NA               | 3.4%                  | 1.4%                  |
| $\Delta g_{Hgg}$                            | 5.7 - 11%               | 2.7 - 7.5%              | 6.4%   | 1.8%              | NA               | 2.2%                  | 0.7%                  |
| $\Delta g_{HWW}$                            | $2.7 - 5.7\%^{\dagger}$ | $1.0 - 4.5\%^{\dagger}$ | 4.8%   | 1.4%              | 1%               | 1.5%                  | 0.25%                 |
| $\Delta g_{HZZ}$                            | $2.7 - 5.7\%^{\dagger}$ | $1.0 - 4.5\%^{\dagger}$ | 1.3%   | 1.3%              | 1%               | 0.25%                 | 0.2%                  |
|                                             |                         |                         |        |                   |                  |                       |                       |
| $\Delta g_{H\mu\mu}$                        | < 30%                   | < 10%                   | _      | 16%               | 15%              | 14%                   | 7%                    |
| $\Delta g_{H\tau\tau}$                      | 5.1 - 8.5%              | 2.0 - 5.4%              | 5.7%   | 2.0%              | 3%               | 1.5%                  | 0.4%                  |
| $\Delta g_{Hcc}$                            | _                       | _                       | 6.8%   | 2.0%              | 4%               | 2.0%                  | 0.25%                 |
| $\Delta g_{Hbb}$                            | 6.9 - 15%               | 2.7 - 11%               | 5.3%   | 1.5%              | 2%               | 0.7%                  | 0.22%                 |
| $\Delta g_{Htt}$                            | 8.7 - 14%               | 3.9-8.0%                | _      | 4.0%              | 3%               | —                     | 30%                   |
| A                                           |                         | 2007‡                   |        | 2607              | 1607             |                       |                       |
| $\Delta gHHH$                               | _                       | 30%)                    | _      | 20%               | 10%              | _                     | _                     |

Note: with the luminosity upgrade, the ILC coupling precision improves by a factor of  $\sim 2$ .

<sup>†</sup> assuming the same deviation for the HWW and HZZ couplings. <sup>‡</sup> two experiments.

### **Higgs Physics at e<sup>+</sup>e<sup>-</sup> Colliders**

A precision Higgs physics program is a key component of all proposals, difference is in energy and luminosity. Physics should have little difference for the same energy and luminosity.

**<u>CEPC</u>**  $\sqrt{s} \sim 240 - 250$  GeV, focusing on measurements with  $ee \rightarrow ZH$ with some contributions from  $ee \rightarrow vvH$ .

#### FCC-ee (TLEP)

same as CEPC, but  $\sqrt{s}$  up to 350 GeV, significantly increase  $ee \rightarrow vvH$  cross section.

**ILC** higher  $\sqrt{s}$ , looked at 250 GeV and 500 GeV for Higgs physics

| Proposal                          | CEPC $(2 \text{ IP})$ | TLEP $(4 \text{ IP})$ |         | ILO    | C*     |
|-----------------------------------|-----------------------|-----------------------|---------|--------|--------|
| $\sqrt{s} \; (\text{GeV})$        | 250                   | 240                   | 350     | 250    | 500    |
| $\int \mathcal{L} dt \ (ab^{-1})$ | 5                     | 10                    | 2.6     | 0.25   | 0.5    |
| # ZH events                       | 1,000,000             | 2,000,000             | 340,000 | 75,000 | 50,000 |
| $\# \nu \nu H$ events             | 30,000                | 50,000                | 70,000  | 3,000  | 75,000 |

\* Baseline design with polarization.

### Search $H \rightarrow \mu \tau$

![](_page_36_Figure_1.jpeg)

### **SM + Singlet**

The simplest extension of the standard model Higgs sector is the addition of a singlet <u>S</u>:

$$V(\phi,S) = \left\{ \mu^2 \phi^{\dagger} \phi + \lambda \left( \phi^{\dagger} \phi \right)^2 \right\} + \left\{ m_s^2 S^2 + \rho S^4 \right\} + \kappa \left( \phi^{\dagger} \phi \right) S^2$$

Interesting phenomenology depends on whether  $\langle S \rangle = 0$ .

If  $\langle S \rangle \neq 0$ , in general the singlet scalar and the "SM" Higgs boson can mix to form two mass eigenstates: (h, H) assuming h = h(125):  $\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix} \begin{pmatrix} H_{SM} \\ S \end{pmatrix}$ 

and new decay  $H \rightarrow hh$  opens up if kinematically allowed.

If  $\langle S \rangle = 0$ , there will be no mixing and the physical scalar s can be stable and is therefore a dark matter candidate.

### **W** Fusion Production

 $ee \rightarrow vvH$  and  $ee \rightarrow ZH \rightarrow vvH$  have the identical final states

At 
$$\sqrt{s} = 250 \text{ GeV}, \ \frac{\sigma(ee \rightarrow vvH \rightarrow vvbb)}{\sigma(ee \rightarrow ZH \rightarrow vvbb)} \approx 0.16$$

Kinematically, the "missing mass" recoiling against the bb system provides the best discrimination

$$\frac{\Delta \left(\sigma_{ZH} \times BR_{bb}\right)}{\sigma_{ZH} \times BR_{bb}} \approx 0.28\%$$

$$\bigcup$$

$$\frac{\Delta \left(\sigma_{VVH} \times BR_{bb}\right)}{\sigma_{VVH} \times BR_{bb}} \approx 3.2\%$$

![](_page_38_Figure_5.jpeg)

### **Direct Width Measurement**

The Higgs width can be in principle extracted from the  $m_{\gamma\gamma}$  or  $m_{4\ell}$  distributions with the signal lineshape Breit-Wigner $(m,\Gamma_{H})\otimes \text{Resultion}(\sigma)$ 

Limited by detector mass resolution, statistics and backgrounds

![](_page_39_Figure_3.jpeg)

The observed high  $\mu$  value plays an important role in the difference between the observation and the expectation.

![](_page_39_Figure_5.jpeg)

x2 difference in sensitivity between ATLAS and CMS?

### **Higgs Boson Mass Measurement**

![](_page_40_Figure_1.jpeg)

### **Individual Experiment Combination**

![](_page_41_Figure_1.jpeg)

### **Electroweak Phase Transition**

![](_page_42_Figure_1.jpeg)

#### SPPC

Direct search of additional Higgs boson such as an electroweak singlet

Measurement of the Higgs boson self-coupling

$$\frac{\Delta\lambda}{\lambda}$$
 < 10%?

![](_page_42_Figure_6.jpeg)