

Light Meson Physics with Crystal Ball at MAMI

Marc Unverzagt Institute for Nuclear Physics Johannes Gutenberg-University Mainz Maherst, 7th March 2014

Marc Unverzagt

HPoFS Workshop

Outline

- Crystal Ball Set-up at MAMI
- η/η' Cross Sections
- Results from Crystal Ball at MAMI
 - Dalitz Plot Parameter for $\eta \rightarrow 3\pi^0$
 - Preliminary Result for $\eta \rightarrow \pi^0 \gamma \gamma$
 - Timelike Transition Form Factor from $\eta \rightarrow e^+e^-\gamma$
 - C-violation in ω decays
- Future Plans
- Summary

Outline

• Crystal Ball Set-up at MAMI

• η/η' Cross Sections

- Results from Crystal Ball at MAMI
 - Dalitz Plot Parameter for $\eta \rightarrow 3\pi^0$
 - Preliminary Result for $\eta \rightarrow \pi^0 \gamma \gamma$
 - Timelike Transition Form Factor from $\eta \rightarrow e^+e^-\gamma$
 - C-violation in ω decays
- Future Plans
- Summary

Experiments at MAMI

Marc Unverzagt

HPoFS Workshop

MESA

<u>Mainz Energy-Recovering Superconducting Accelerator</u> High-Intensity Electron Accelerator: 200 MeV @ 1 mA current

Frontier Experiments:

- Precision measurement of $\sin^2 \theta_W$
- Search for Dark Photon
- Frontier Projects in Particle, Hadron, Nuclear Physics, ...

Marc Unverzagt

HPoFS Workshop

Meson Production with Real Photons

Current production rates on lH₂ target feasible for taking data (Meson Factory):

$$η: 10^5 h^{-1} \Rightarrow \text{Goal } 10^6 h^{-1}$$

 $η': 2 \cdot 10^3 h^{-1} \Rightarrow \text{Goal } 1.5 \cdot 10^4 h^{-1}$

Has to be imposed by detection and anlysis efficiencies

 \Rightarrow 4 π Crystal Ball/TAPS setup, e.m. Production mechanism very clean

⇒ Ideally suited to measure high rates of meson decays

Outline

• Crystal Ball Set-up at MAMI

• η/η ' Cross Sections

- Results from Crystal Ball at MAMI
 - Dalitz Plot Parameter for $\eta \rightarrow 3\pi^0$
 - Preliminary Result for $\eta \rightarrow \pi^0 \gamma \gamma$
 - Timelike Transition Form Factor from $\eta \rightarrow e^+e^-\gamma$
 - C-violation in ω decays
- Future Plans
- Summary

η Photoproduction Cross Section

Crystal Ball: E.F. McNicoll et al., Phys. Rev. C 82 (2010) 035208. Crystal Barrel: V. Crede et al., Phys. Rev. Lett. 94 (2005) 012004. CLAS: M. Dugger et al., Phys. Rev. Lett. 89 (2002) 222002. Erratum-ibid. 89 (2002) 249904. SAPHIR: J. Barth et al., Eur. Phys. J. A 18 (2003) 117. Crystal Barrel: V. Crede et al., Phys. Rev. C 80 (2009) 055202.

Marc Unverzagt

HPoFS Workshop

η Photoproduction

At MAMI a beam of tagged photons of excellent quality is available:

- High intensity photon beam
- Fine energy resolution
- Outstanding stability

Beam energy nearly perfect for high statistics η photoproduction

$\eta' \rightarrow \eta \pi^0 \pi^0$ Invariant Mass

Marc Unverzagt

HPoFS Workshop

η' Cross Section

Using $\eta' \rightarrow \eta \pi^0 \pi^0$

Marc Unverzagt

HPoFS Workshop

Outline

- Crystal Ball Set-up at MAMI
- η/η' Cross Sections

Results from Crystal Ball at MAMI

- Dalitz Plot Parameter for $\eta \rightarrow 3\pi^0$
- Preliminary Result for $\eta \rightarrow \pi^0 \gamma \gamma$
- Timelike Transition Form Factor from $\eta \rightarrow e^+e^-\gamma$
- C-violation in ω decays
- Future Plans
- Summary

Marc Unverzagt

HPoFS Workshop

$\eta \rightarrow 3\pi$

Parametrization of $\eta \rightarrow 3\pi^0$ Dalitz plot:

$$|A(\eta \to 3\pi^0)|^2 = N \cdot (1 + 2\alpha z + \dots)$$
$$z = 6\sum_{i=1}^3 \left(\frac{E_i - m_\eta/3}{m_\eta - 3m_{\pi^0}}\right)^2 = \frac{\rho^2}{\rho_{max}^2}$$

 $E_i: \pi^0$ energies in h rest frame, ρ : radial distance to center of Dalitz plot

Marc Unverzagt

$\eta \to 3\pi^0$ Dalitz Plot Parameter

• World's most precise results on $\eta \rightarrow 3\pi^0$ decay from CB at MAMI

Experiments reach precision where higher order effects (cusp-effect, second order term in expansion) become visible

Marc Unverzagt

HPoFS Workshop

Effect of Cusp in α

Taken from PhD thesis of R. Nissler, University Bonn, 2007.

Cusp has 5% effect on Dalitz Plot Parameter C. Ditsche, B. Kubis, Ulf-G. Meißner, Eur. Phys. J. C 60, 83 (2009).

Further effects:

- Kinematic boundaries
- Second order in amplitude expansion

Cusp-Effect

- $\eta \rightarrow \pi^0 \pi^+ \pi^-$ contributes via $\pi^+ \pi^- \rightarrow \pi^0 \pi^0$
- Cabibbo, Isidori and Bissegger *et al.* have developed framework to extract $a_0^{-}a_2^{-}$ from K $\rightarrow 3\pi$ (NA48) and $\eta \rightarrow 3\pi$ invariant $\pi^0 \pi^0$ mass spectra
- Cusp effect in η decay only at few % level \rightarrow need high precision

S. Prakhov et al. (Crystal Ball at MAMI), Phys. Rev. C **79** (2009) 035204. Bissegger, Fuhrer, Gasser, Kubis, Rusetsky, Phys.Lett. B **659** (2008), 576 (solid line) J. Belina, Diploma thesis, University Bern, Switzerland (dashed line).

Marc Unverzagt

HPoFS Workshop

Outline

- Crystal Ball Set-up at MAMI
- η/η' Cross Sections

Results from Crystal Ball at MAMI

- Dalitz Plot Parameter for $\eta \rightarrow 3\pi^0$
- Preliminary Result for $\eta \rightarrow \pi^0 \gamma \gamma$
- Timelike Transition Form Factor from $\eta \rightarrow e^+e^-\gamma$
- C-violation in ω decays
- Future Plans
- Summary

Double Radiative $\eta \rightarrow \pi^0 \gamma \gamma$

- Tree level amplitudes at O(p²) and O(p⁴) vanish
- π and K loops largly suppressed by G-parity and large Kaon mass
- First sizable contribution from (p⁶)
- Coefficients must be determined using models (e.g. VMD)

⇒ Stringent test for χ PT at O(p⁶) as well as models

- Calculations must describe $\Gamma(\eta \rightarrow \pi^0 \gamma \gamma)$ and differential decay width $d\Gamma/dm^2(\gamma \gamma)$
- Discrepancies between models in $d\Gamma/dm^2(\gamma\gamma)$
- Discrepancies in experimental results for $\Gamma(\eta \rightarrow \pi^0 \gamma \gamma)$
- Experimental challenges:
 - Small rate
 - Large background (e.g. $\pi^0\pi^0$)
 - Only three measurements of $d\Gamma/dm^2(\gamma\gamma)$: CB@AGS, CB@MAMI, WASA@COSY
- New CB@MAMI analysis based on data taken in 2007 and 2009 (6·10⁷ η produced)

Analysis of $\eta \to \pi^0 \gamma \gamma$

- Based on kinematic fitting
- $\pi^0\pi^0$ background suppressed by anti-hypothesis
- Results based on $1.2 \cdot 10^3 \eta \rightarrow \pi^0 \gamma \gamma$ events

• Below preliminary results from 2009

Decay Rate $\eta \rightarrow \pi^0 \gamma \gamma$

General agreement but statistics still not sufficient to distinguish between models! Need more statistics to examine Dalitz plot! To be submitted soon!

Comparison $\eta \rightarrow \pi^0 \gamma \gamma$

P. Gauzzi (KLOE), J. Phys. Conf. Ser. 349 (2012) 012002.

S. Prakhov (UCLA), private communication Only 2007 data set. 2009 has ~400 events.

Marc Unverzagt

HPoFS Workshop

Decay Width of $\eta \to \pi^0 \gamma \gamma$

- $\Gamma = (0.84 \pm 0.19) \text{ eV}, \text{ GAMS2000}, 1984$
- $\Gamma = (0.45 \pm 0.12) \ {\rm eV}, \ {\rm CB}({\rm AGS}), 2005$
- $\Gamma = (0.11 \pm 0.04) \text{ eV}, \text{ KLOE}, 2006 \text{ (preliminary)}$
- $\Gamma = (0.290 \pm 0.063)$ eV, A2(MAMI B), 2007 (preliminary)
- $\Gamma = (0.285 \pm 0.068)$ eV, CB(AGS), 2008 (reanalysis of 2005)

 $\Gamma = (0.33 \pm 0.11) \text{ eV}, \text{ WASA at COSY}, \text{Ph.D. thesis of K. Lalwani, 2010 (preliminary)}$

$$\begin{split} &\Gamma = (0.30^{+0.16}_{-0.13}) \text{ eV}, \text{ VMD}, 1992 \\ &\Gamma = (0.33 \pm 0.08) \text{ eV}, \text{ Ch. Unitary}, 2008 \\ &\Gamma = 0.31 \text{ eV}, \text{ Ch. Lagrang.}, 2012 \end{split}$$

CB at MAMI (2013): S. Prakhov (UCLA, University Mainz)

• Data from 2007 and 2009 combined:

 $\Gamma(\eta \to \pi^0 \gamma \gamma) = (0.33 \pm 0.03_{\text{tot}}) \text{ eV} \quad preliminary$

- Agreement with latest results, except KLOE
- Most precise value from CB@MAMI

Outline

- Crystal Ball Set-up at MAMI
- η/η' Cross Sections

• Results from Crystal Ball at MAMI

- Dalitz Plot Parameter for $\eta \rightarrow 3\pi^0$
- Preliminary Result for $\eta \rightarrow \pi^0 \gamma \gamma$
- Timelike Transition Form Factor from $\eta \rightarrow e^+e^-\gamma$
- C-violation in ω decays
- Future Plans
- Summary

Transition Form Factor with VMD

- Mechanism especially pronounced in timelike region at $q^2 \approx m_V^{-2}$
 - → Virtual meson reaches "mass shell", becomes real
 - → Strong resonance enhancement around vector meson mass
- \bullet TFF behaviour, especially for $\eta^{\prime},$ not well known
- TFF modifies differential decay width

$$\frac{d\Gamma}{dm^2} = \left[\frac{d\Gamma}{dm^2}\right]_{\text{QED}} \cdot \left|F(m^2)\right|^2$$

• For η often one-pole approximation used:

$$|F(m^2)|^2 = \left(1 - \frac{m^2}{\Lambda^2}\right)^{-2} \qquad \text{Exp:} \quad \Lambda \approx 0.72 \text{ GeV} \quad \Rightarrow \quad \Lambda^{-2} = 1.93 \text{ GeV}^{-2}$$
$$\text{VMD:} \Lambda \approx m_{\rho} = 0.77 \text{ GeV}$$

• For η ' resonance shape:

$$\left|F(m^2)\right|^2 = \frac{\Lambda^2(\Lambda^2 + \gamma^2)}{(\Lambda^2 - m^2)^2 + \Lambda^2 \gamma^2} \qquad \Lambda \approx 0.76 \text{ GeV} \quad \gamma \approx 0.10 \text{ GeV}$$

• Gain information on structure of meson and η/η' mixing, (dark photon? $\eta \rightarrow \gamma' \gamma \rightarrow e^+e^-\gamma$)

s $\eta = (\rho, \omega, \phi)^*$ γ^* e^+e^-

Hadronic LbL Contribution to $a_{\mu} = (g-2)_{\mu}$

• QED contributions:

 $a_{\mu}^{\text{QED}} = (11658471.895 \pm 0.008) \cdot 10^{-10}$

T. Kinoshita et al., Phys. Rev. Lett. **109** (2012) 111808.

• Electro-Weak contribution:

 $a_{\mu}^{\text{Weak}} = (15.4 \pm 0.2) \cdot 10^{-10}$

A. Czarnecki et al., Phys. Rev. D 67 (2003) 073006. Erratum-ibid. D 73 (2006) 119901.
M. Knecht et al., JHEP 0211 (2002) 003.

• Hadronic vacuum polarisation:

 $a_{\mu}^{\rm VP} = (692.3 \pm 4.2) \cdot 10^{-10}$

M. Davier et al., Eur. Phys. J. C **71** (2011) 1515.

• Hadronic light-by-light:

 $a_{\mu}^{\rm LbL} = (10.5 \pm 2.6) \cdot 10^{-10}$

J. Prades et al., arXiv:0901.0306 (2009).

Transition Form Factors of light pseudoscalar mesons could give important input for SM calculations of $(g-2)_{\mu}$

First A2 Analysis for η TFF

H. Berghäuser et al. (A2-Collaboration), Phys. Rev. B 701 (2011) 562-567.

- Using $\eta \rightarrow e^+e^-\gamma$
- Based on kinematic cuts
- Small amount of data
- Limited photoproduction energy range

First A2 Result for η TFF

H. Berghäuser et al. (A2-Collaboration), Phys. Rev. B 701 (2011) 562-567.

CB/TAPS MAMI-C: 1350 $\eta \rightarrow e^+e^-\gamma$ eventsNA60:9000 $\eta \rightarrow \mu^+\mu^-\gamma$ eventsSND:109 $\eta \rightarrow e^+e^-\gamma$ events

$$|F(m^2)|^2 = \left(1 - \frac{m^2}{\Lambda^2}\right)^{-2}$$

$$\Lambda^{-2} = (1.92 \pm 0.35_{\text{stat}} \pm 0.13_{\text{syst}}) \text{ GeV}^{-2}$$

NA60, In-In: R. Arnaldi et al., Phys. Lett. B **677** (2009) 260. SND: M.N. Achasov et al., Phys. Lett. B **504** (2001) 275. Terschluesen Leupold: C. Terschlüsen, Diploma thesis, University Gießen, Germany, 2010.

New Analysis of η TFF

- Based on kinematic fitting
- 3x more data
- \bullet Full η photoproduction range accessible at MAMI used
- 18,000 events (no proton requirement: 22,000 events), most precise $\eta \rightarrow e^+e^-\gamma$ up to now

Marc Unverzagt

New A2 Result for η TFF

S. Prakhov, M. Unverzagt et al., accepted by Phys. Rev. C, arXiv: 1309.5648 [hep-ex]

A2, 2011: H. Berghäuser et al., Phys. Rev. B 701 (2011) 562-567.
NA60, In-In: R. Arnaldi et al., Phys. Lett. B 677 (2009) 260.
TL calculation: C. Terschlüsen, Diploma thesis, University Gießen, 2010.
Padé-approximants: R. Escribano, P. Masjuan, P. Sanchez-Puertas, arXiv:1307.2061 [hep-ph].
DT calculation: C. Hahnhart, A. Kupść, U.-G. Meißner, F. Stollenwerk, A. Wirzba, Eur. Phys. J. C73 (2013) 2668.

Marc Unverzagt

HPoFS Workshop

Outline

- Crystal Ball Set-up at MAMI
- η/η' Cross Sections

• Results from Crystal Ball at MAMI

- Dalitz Plot Parameter for $\eta \rightarrow 3\pi^0$
- Preliminary Result for $\eta \rightarrow \pi^0 \gamma \gamma$
- Timelike Transition Form Factor from $\eta \rightarrow e^+e^-\gamma$
- C-violation in ω decays
- Future Plans
- Summary

C/CP-Violation

Sacharov criterium:

C/CP-violation is one of three criteria to explain dominance of matter over antimatter (Baryogenesis)

Electromagnetism, and strong force are assumed to be invariant under C and CP transformation

> CP-violation in weak interaction not strong enough to explain Baryogenesis

CHARGE CONJUGATION (C) INVARIANCE

$\Gamma(\pi^0 \rightarrow 3\gamma)/\Gamma_{total}$		$<3.1 \times 10^{-8}$, CL = 90%
η C-nonconserving decay parameters		
$\pi^+\pi^-\pi^0$ left-right asymmetry		$(0.09^{+0.11}_{-0.12}) \times 10^{-2}$
$\pi^+\pi^-\pi^0$ sextant asymmetry		$(0.12^{+0.10}_{-0.11}) \times 10^{-2}$
$\pi^+\pi^-\pi^0$ quadrant asymmetry		$(-0.09\pm 0.09)\times 10^{-2}$
$\pi^+\pi^-\gamma$ left-right asymmetry		$(0.9 \pm 0.4) \times 10^{-2}$
$\pi^+\pi^-\gamma$ parameter β (<i>D</i> -wave)		$-0.02 \pm 0.07 \ (S = 1.3)$
$\Gamma(\eta \rightarrow \pi^0 \gamma) / \Gamma_{\text{total}}$		$<9 \times 10^{-5}$, CL = 90%
$\Gamma(\eta \rightarrow 2\pi^0 \gamma)/\Gamma_{\text{total}}$		$<5 \times 10^{-4}$, CL = 90%
$\Gamma(\eta \rightarrow 3\pi^0 \gamma)/\Gamma_{\text{total}}$		$< 6 \times 10^{-5}$, CL = 90%
$\Gamma(\eta \rightarrow 3\gamma)/\Gamma_{total}$		$<1.6 \times 10^{-5}$, CL = 90%
$\Gamma(\eta \rightarrow \pi^0 e^+ e^-) / \Gamma_{total}$	[a]	$< 4 \times 10^{-5}$, CL = 90%
$\Gamma(\eta \rightarrow \pi^0 \mu^+ \mu^-) / \Gamma_{\text{total}}$	[a]	$<5 \times 10^{-6}$, CL = 90%
$\Gamma(\omega(782) \rightarrow \eta \pi^0) / \Gamma_{\text{total}}$		$<2.1 \times 10^{-4}$, CL = 90%
$\Gamma(\omega(782) \rightarrow 2\pi^0)/\Gamma_{total}$		$<2.1 \times 10^{-4}$, CL = 90%
$\Gamma(\omega(782) \rightarrow 3\pi^0)/\Gamma_{total}$		$<2.3 \times 10^{-4}$, CL = 90%
asymmetry parameter for $\eta'(958) \rightarrow \pi^+ \pi^- \gamma$ decay		-0.03 ± 0.04
$\Gamma(\eta'(958) \rightarrow \pi^0 e^+ e^-) / \Gamma_{\text{total}}$	[a]	$<1.4 \times 10^{-3}$, CL = 90%
$\Gamma(\eta'(958) \rightarrow \eta e^+ e^-) / \Gamma_{total}$	[a]	$<2.4 \times 10^{-3}$, CL = 90%
$\Gamma(\eta'(958) \rightarrow 3\gamma)/\Gamma_{total}$		$<1.0 \times 10^{-4}$, CL = 90%
$\Gamma(\eta'(958) \rightarrow \mu^+ \mu^- \pi^0) / \Gamma_{\text{total}}$	[a]	$< 6.0 \times 10^{-5}, CL = 90\%$
$\Gamma(\eta'(958) \rightarrow \mu^+ \mu^- \eta) / \Gamma_{\text{total}}$	[a]	$<1.5 \times 10^{-5}, CL = 90\%$
$\Gamma(J/\psi(1S) \rightarrow \gamma\gamma)/\Gamma_{\text{total}}$		$<5 \times 10^{-6}$, CL = 90%

CP INVARIANCE

$\operatorname{Re}(d_{\tau}^{W})$	${<}0.50\times10^{-17}$ ecm, $CL=95\%$	
$lm(d_{\tau}^{W})$	${<}1.1 \times 10^{-17}$ e cm, CL $=$ 95%	
$\eta ightarrow \pi^+\pi^-e^+e^-$ decay-plane asymmetry	$(-0.6 \pm 3.1) \times 10^{-2}$	
$\Gamma(\eta \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$	$< 1.3 imes 10^{-5}$, CL = 90%	
$\Gamma(\eta \rightarrow 2\pi^0)/\Gamma_{total}$	${<}3.5 imes10^{-4}$, CL ${=}90\%$	
$\Gamma(\eta \rightarrow 4\pi^0)/\Gamma_{\text{total}}$	${<}6.9 \times 10^{-7},~\text{CL} = 90\%$	
$\Gamma(\eta'(958) \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$	${<}2.9 imes10^{-3}$, CL ${=}90\%$	
$\Gamma(\eta'(958) \rightarrow \pi^0 \pi^0) / \Gamma_{\text{total}}$	${<}1.0 \times 10^{-3}\text{, CL} = 90\%$	
$\mathcal{K}^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ rate difference/average	(0.08 ± 0.12)%	
$\mathcal{K}^{\pm} ightarrow \pi^{\pm} \pi^{0} \pi^{0}$ rate difference/average	(0.0 ± 0.6)%	
$\mathcal{K}^{\pm} ightarrow \pi^{\pm} \pi^{0} \gamma$ rate difference/average	(0.9 ± 3.3)%	
$K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-} (g_{+} - g_{-}) / (g_{+} + g_{-})$	(-1.5+-2.2) × 10 ⁻⁴	
$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0} (g_{+} - g_{-}) / (g_{+} + g_{-})$	$(1.8+-1.8) \times 10^{-4}$	

Only weak upper limits

Marc Unverzagt

HPoFS Workshop

C-Violating ω Decays

• $7 \cdot 10^6 \omega$ events produced in 3 weeks (parallel to η production)

Only CB at MAMI results used by PDG!

A. Starostin et al., Phys. Rev. C 79, 065201 (2009).

Marc Unverzagt

HPoFS Workshop

Outline

- Crystal Ball Set-up at MAMI
- η/η' Cross Sections
- Results from Crystal Ball at MAMI
 - Dalitz Plot Parameter for $\eta \rightarrow 3\pi^0$
 - Preliminary Result for $\eta \rightarrow \pi^0 \gamma \gamma$
 - Timelike Transition Form Factor from $\eta \rightarrow e^+e^-\gamma$
 - C-violation in ω decays
- Future Plans
- Summary

Perspectives for η

Proposed production yields with Crystal Ball at MAMI: 10 weeks: $5 \cdot 10^8 \eta$ (factor 10 improvement)

- Neutral decay modes with unprecedented accuracy with CB: QCD/ χ PT related (Dalitz plot analysis): $\eta \rightarrow 3\pi^0$ Further effects: kinematic boundaries, second order term in expansion, cusp effect (few %), $\pi\pi$ -scattering
- Transition Form Factor: Improve single Dalitz decay $\eta \rightarrow e^+e^-\gamma$ Double Dalitz decay $\eta \rightarrow e^+e^-e^+e^-?$
- C/CP-violation: $\eta \rightarrow 2\pi^0 \gamma, \ \eta \rightarrow 3\pi^0 \gamma, \ \eta \rightarrow 3\gamma, \eta \rightarrow 4\pi^0$
- Fix parameters for EFT Charged decays $\eta \rightarrow \pi^+\pi^-\gamma$, $\eta \rightarrow \pi^+\pi^-\gamma\gamma$
- Measurements of absolute branching ratios/forbidden decays

A. Denig, W. Gradl, M. Ostrick, M. Unverzagt (University Mainz), S. Prakhov, (UCLA/Mainz)

Marc Unverzagt

HPoFS Workshop

Perspectives for η'

Proposed production yields with Crystal Ball at MAMI: 10 weeks: $2 \cdot 10^7 \eta'$ (factor 4 improvement) in fall 2014

- Neutral decay modes with unprecedented accuracy with CB: unstable particles in EFT BR($\eta' \rightarrow \omega \gamma / \eta' \rightarrow \eta \pi^0 \pi^0$) improve by factor 2-5 PDG 2012: BR($\eta' \rightarrow \omega \gamma / \eta' \rightarrow \eta \pi^0 \pi^0$) = 0.147±0.016
- QCD/ χ PT related (Dalitz plot analyses) $\eta' \rightarrow 3\pi^0$, $\eta' \rightarrow \eta \pi^0 \pi^0$ (~400.000 events expected) Further effects: cusp effect (8%), $\pi\pi$ and $\pi\eta$ -scattering
- Transition Form Factor: Single Dalitz decay $\eta' \rightarrow e^+e^-\gamma$ (800 events proposed)

A. Denig, W. Gradl, M. Ostrick, M. Unverzagt (University Mainz), S. Prakhov, (UCLA/Mainz)

Rate Estimation η'→e⁺e⁻γ

S. Wagner, Master thesis, University Mainz, 2013 M. Unverzagt, A. Denig

- $\eta' \rightarrow e^+e^-\gamma$ no observation published yet worldwide
- 5.5 weeks of η' photoproduction in 2012
 - Analysis of $\eta' \rightarrow \eta \pi^0 \pi^0$ \rightarrow Total 1.5 million η' produced
- Simulation based on
 - PDG upper limit for branching ratio
 - 20 background channels simulated
 - Kinematic cuts (try kinematic fit ?)
 - Most critical backgrounds: $\pi^0\pi^0$, $\pi^0\eta$
 - Acceptance ~8.5% (preliminary)
- Expected: ~80 $\eta' \rightarrow e^+e^-\gamma$ events from 2012 data

Kanal	$\sigma \left[\mu b \right]$	BR	simulierte
	U 1		Statistik
$\eta' \to e^+ e^- \gamma$	0,76	$<9\cdot 10^{-4}$	10M
$\eta' \to \pi^+ \pi^- \eta$	0,76	$43,\!40\%$	$5\mathrm{M}$
$\eta' \to \rho^0 \gamma$	0,76	$29{,}30\%$	8M
$\eta' \to \mu^+ \mu^- \gamma$	0,76	$1,\!07\cdot10^{-4}$	$5\mathrm{M}$
$\eta' \to \gamma \gamma$	0,76	$2,\!18\%$	$6\mathrm{M}$
$\eta \to e^+ e^- \gamma$	1,85	$6,9\cdot 10^{-3}$	$5\mathrm{M}$
$\eta \to \pi^+\pi^-\gamma$	1,85	$4{,}60\%$	$5\mathrm{M}$
$\eta \to \pi^+\pi^-\pi^0$	1,85	$22,\!74\%$	$5\mathrm{M}$
$\eta \to \mu^+ \mu^- \gamma$	1,85	$3,1\cdot 10^{-4}$	$5\mathrm{M}$
$\eta \to \gamma \gamma$	1,85	$39{,}31\%$	$5\mathrm{M}$
$\omega \to e^+ e^- \pi^0$	6,44	$7,7\cdot 10^{-4}$	$5\mathrm{M}$
$\omega \to \pi^+\pi^-\pi^0$	6,44	$89{,}20\%$	$5\mathrm{M}$
$\omega \to \pi^+\pi^-$	6,44	$1,\!53\%$	$5\mathrm{M}$
$\rho^0 \to e^+ e^-$	19,00	$4{,}72\cdot10^{-5}$	$5\mathrm{M}$
$\rho^0 \to \pi^+\pi^-$	19,00	${\sim}100\%$	$5\mathrm{M}$
$\pi^0 \to e^+ e^- \gamma$	10,52	$1,\!17\%$	$5\mathrm{M}$
$\pi^0 \to \gamma \gamma$	10,52	$98{,}82\%$	10M
$\gamma p \to \pi^+\pi^-\pi^0$	15,00		$5\mathrm{M}$
$\gamma p \rightarrow \pi^+ \pi^-$	68,62		10M
$\pi^0\pi^0 \to 4\gamma$	6,87	$97,\!65\%$	20M
$\pi^0 \eta \to 4\gamma$	4,09	38,85%	20M

Time-like TFF for η'

S. Wagner, Master thesis, University Mainz, 2013 M. Unverzagt, A. Denig

- New Goal: ~800 $\eta' \rightarrow e^+e^-\gamma$ events in fall 2014 measurement
- Only possible if acceptance holds, has to be improved (use kinematic fit?)
- Next: analyse old data (S. Prakhov, S. Wagner)

Perspectives for η'

Proposed production yields with Crystal Ball at MAMI: 10 weeks: $2 \cdot 10^7 \eta'$ (factor 4 improvement) in fall 2014

- Neutral decay modes with unprecedented accuracy with CB: unstable particles in EFT BR($\eta' \rightarrow \omega \gamma / \eta' \rightarrow \eta \pi^0 \pi^0$) improve by factor 2-5 PDG 2012: BR($\eta' \rightarrow \omega \gamma / \eta' \rightarrow \eta \pi^0 \pi^0$) = 0.147±0.016
- QCD/ χ PT related (Dalitz plot analyses) $\eta' \rightarrow 3\pi^0$, $\eta' \rightarrow \eta \pi^0 \pi^0$ (~400.000 events expected) Further effects: cusp effect (8%), $\pi\pi$ and $\pi\eta$ -scattering
- Transition Form Factor: Single Dalitz decay η'→e⁺e⁻γ (800 events proposed) Double Dalitz decay η'→e⁺e⁻e⁺e⁻?
- Fix parameters for EFT Charged decays $\eta' \rightarrow \pi^+\pi^-\gamma$, $\eta' \rightarrow \pi^+\pi^-\gamma\gamma$
- Measurements of absolute branching ratios/forbidden decays

A. Denig, W. Gradl, M. Ostrick, M. Unverzagt (University Mainz), S. Prakhov, (UCLA/Mainz)

Marc Unverzagt

Perspectives for ω

Proposed production yields with Crystal Ball at MAMI: 8 weeks: $2 \cdot 10^8 \omega$ (factor 30 improvement)

Neutral decay modes with unprecedented accuracy with CB:

- BR($\omega \rightarrow \eta \gamma / \omega \rightarrow \pi^0 \gamma$) improve by factor 2-5 PDG 2010: BR($\omega \rightarrow \eta \gamma / \omega \rightarrow \pi^0 \gamma$) = 0.0098±0.0024 (not used anymore) $\omega \rightarrow \eta \gamma / \omega \rightarrow \pi^0 \gamma$: power counting for unstable particles 100 in effective field theory
- Transition Form Factor for $\omega \rightarrow \pi^0 e^+e^-$ •

Marc Unverzagt

HPoFS Workshop

Perspectives for π^0

C-violating decay: $\pi^0 \rightarrow 3\gamma$

Main background channels:

 $\pi^0 \pi^0$ production

 $\pi^0 \rightarrow 2\gamma$

 $\pi^0 \rightarrow e^+ e^- \gamma$

Current bound: BR($\pi^0 \to 3\gamma$) < 3.1 · 10⁻⁸ (90 %C.L.)

Crystal Box Experiment at Los Alamos in $\pi^-+p \rightarrow \pi^0+n$

J. McDonough et al., Phys. Rev. **D38** (1988) 2121.

 $π^0$ →4γ (allowed high order process, never seen yet, can be improved in parallel) BR($π^0 → 4γ$) < 2 · 10⁻⁸ (90 %C.L.)

Reduce at trigger level

by factor 100!

J. McDonough et al., Phys. Rev. **D38** (1988) 2121.

$$BR_{4\gamma}^{\text{QED}} = \frac{\Gamma_{\pi^0 \to 4\gamma}}{\Gamma_{\pi^0 \to 2\gamma}} \sim 2.6 \cdot 10^{-11} \qquad \textcircled{PR}_{4\gamma}^{\text{hadr}} \sim 10^{-9} - 7.1 \cdot 10^{-18}$$

W. Gradl, M. Unverzagt, Jennifer Wettig (University Mainz), G. Ron (Jerusalem)

Conclusion π^0

- Within 100h of beamtime on ²⁰⁸Pb or ²³⁶U upper limits for $\pi^0 \rightarrow 3\gamma/4\gamma$ may be improved by up to two orders of magnitude, deviations from Standard Model indicate New Physics
- Pilot test for more rare decays (also η/ω ?) and possibly decay studies with higher rate
- Especially look at $\pi^0 \rightarrow e^+e^-\gamma$

W. Gradl, M. Unverzagt, Jennifer Wettig (University Mainz), G. Ron (Jerusalem)

Outline

- Crystal Ball Set-up at MAMI
- η/η' Cross Sections
- Results from Crystal Ball at MAMI
 - Dalitz Plot Parameter for $\eta \rightarrow 3\pi^0$
 - Preliminary Result for $\eta \rightarrow \pi^0 \gamma \gamma$
 - Timelike Transition Form Factor from $\eta \rightarrow e^+e^-\gamma$
 - C-violation in ω decays
- Future Plans
- Summary

Summary

- World leading results from Crystal Ball at MAMI Dalitz plot parameter: η→3π⁰ χPT, VMD: η→π⁰γγ Transition Form Factor: η→e⁺e⁻γ C-violation: neutral ω decays
- Further analyses in η/ω decays possible with existing data
- Main focus: η' studies Data taking planned for 2nd half of 2014 Goals: 400,000 $\eta' \rightarrow \eta \pi^0 \pi^0$ 800 $\eta' \rightarrow e^+e^-\gamma$
- New programme with very rare decays under investigation $\pi^0 \rightarrow 3\gamma/4\gamma$, extend to other rare π^0 , η , ω decays
- New detector possibilities under discussion

Chiral Symmetry Breaking

$$L_{\text{QCD}} = \bar{q} \left(i \not \!\!\!D - M \right) q - \sum_{a=1}^{8} \frac{1}{4} G_{\mu\nu,a} G_{a}^{\mu\nu}$$

• Chiral limit $(m_u = m_d = m_s = 0)$:

 $U(3)_{L} \ge U(3)_{R} = SU(3)_{L} \ge SU(3)_{R} \ge U(1)_{V} \ge U(1)_{A}$ symmetry

Hadrons do not come in parity doublets → Chiral symmetry must be broken (spontaneously)

• $SU(3)_{L} \times SU(3)_{R} \rightarrow SU(3)_{V}$ gives rise to 8 massless, pseudoscalar Goldstone bosons

HPoFS Workshop

Marc Unverzagt

Explicit Symmetry Breaking

Quarks have finite masses

- SU(3) flavor symmetry: $m_u = m_d = m_s \neq 0$
- SU(2) isospin symmetry: $m_u = m_d \neq m_s$
- Isospin breaking: $m_{u} \neq m_{d}$
- Electromagnetic effects also break isospin symmetry

Using: $\eta \rightarrow 3\pi$, $\eta' \rightarrow 3\pi$; $\eta' \rightarrow 2\pi\eta$

Extract:
$$Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$$
 $\hat{m} = \frac{m_u + m_d}{2}$

η/η' mixing

 η and η' are admixtures of pure SU(3) singlet and octet states

 $\eta = \eta_0 \sin\theta - \eta_8 \cos\theta$ $\eta' = \eta_0 \cos\theta + \eta_8 \sin\theta$

$$\eta/\eta'$$
: $I^{G}(J^{PC})=0^{+}(0^{-+})$

- Mixing caused by SU(3) breaking due to strange quark mass AND the chiral anomaly
- Beyond leading-order single mixing angle not sufficient, possible gluonium content

U(1)_A Anomaly

• Quantum fluctuations destroy singlet axial-vector current conservation

- Why is the η ' so heavy?
- ω -term includes gluons \rightarrow strongly interacting $\rightarrow \eta'$ heavy

• Applicability of χ PT to η '? (chiral symmetry breaking scale: $4\pi f_{\pi} \approx 1.2$ GeV, η ' as a Goldstone boson) (theory)

CP-Violation in SM

CP-violation in SM: quark mass eigenstates are different from weak eigenstates:

→ quark mixing matrix (Cabibbo, Kobayashi, Maskawa)

→ different mixing matrices for quarks and antiquarks → CP-violation CKM-matrix complex and unitary → 4 parameters (e.g. 3 angles and one phase) Single phase in CKM-matrix responsible for CP-violation

Mainz Microtron (MAMI-B)

Marc Unverzagt

HPoFS Workshop

Marc Unverzagt

HPoFS Workshop

Tagging Spectrometer

Tagging range: 5.1 to 93% of E_0

Maximum energy tagged for $E_0 = 1604$ MeV is 1491 MeV

 \rightarrow New tagging device for η' experiments needed!

4π-Setup

Crystal Ball:672 NaI(Tl) crystals93,3% of total solid angleEach crystal equipped with PMT $\frac{\sigma}{E_{\gamma}} = \frac{2\%}{(E_{\gamma}/GeV)^{0.25}}$ $\sigma(\theta) = 2^{\circ}...3^{\circ}$ $\Delta t = 2.5 \text{ ns FWHM}$ $\sigma(\phi) = \frac{2^{\circ}...3^{\circ}}{\sin(\theta)}$

<u>TAPS:</u> Up to 510 BaF₂ crystals Polar acceptance: 4-20° $\Delta t = 0.5 \text{ ns FWHM}$ $\frac{\sigma}{E_{\gamma}} = \frac{0.79\%}{\sqrt{E_{\gamma}/GeV}} + 1.8\%$

Marc Unverzagt

CB PID

Particle Identificaton Detector (PID):

- Cylindrical Detector inside CB
- 24 scintillator strips
- PMT readout

TAPS PI

Marc Unverzagt

HPoFS Workshop

Setup Performance

<u>Two main η decay modes:</u>

BR($\eta \rightarrow 2\gamma$)=39.38%

BR($\eta \rightarrow 3\pi^{0}$)=32.51%

 $3 \cdot 10^6 \eta \rightarrow 3\pi^0$ analysed from ~6 weeks $\rightarrow 30M \eta$ produced

Marc Unverzagt

HPoFS Workshop

Result for α

Marc Unverzagt

HPoFS Workshop

Understanding α : order-by-order decomposition

Marc Unverzagt

HPoFS Workshop

Understanding α : interpretation of the ChPT result

Remember: ChPT at $\mathcal{O}(p^6)$

Bijnens, Ghorbani 2007

 $\alpha_{ChPT} = (13 \pm 32) \times 10^{-3}$ vs. $\alpha_{NREFT} = (-22.2 \pm 5.0) \times 10^{-3}$

• Why the difference?

Emulate ChPT $\mathcal{O}(p^6)$ calculation:

• rescattering parameters at $\mathcal{O}(p^4)$ in one-loop graphs • rescattering parameters at $\mathcal{O}(p^2)$ in two-loop graphs ($a_0^0 = 0.16, \ldots$)

Result:

• we find $\alpha = (-0.7 \times 10^{-3})$

 \Rightarrow "weaker" rescattering leads to completely different result!

S.P. Schneider, Towards a better understanding of the slope parameter in $\eta \, o \, 3 \pi^0$ – p. :

Marc Unverzagt

HPoFS Workshop

η' Production

- Installation EPT fall 2011
- First test run December 2011
- First test/production measurement successful in March 2012!
- η ' production runs (each 2,5 weeks) successful May/August 2012!

Marc Unverzagt

HPoFS Workshop

Time-like TFF at MAMI

Time-like momentum transfer (meson decays):

- $(2m_l)^2 < q^2 < M^2$
- Crystal Ball, WASA, KLOE, Crystal Barrel, BESIII, CLAS

$$\frac{d\Gamma(P \rightarrow e^+e^-\gamma)}{dm \ \Gamma(P \rightarrow \gamma\gamma)} = \frac{4\alpha}{3\pi m} \sqrt{1 - \frac{4m_e^2}{m^2}} \left(1 + \frac{2m_e^2}{m^2}\right) \left[1 - \frac{m^2}{m_P^2}\right]^3 \left|F(q^2)\right|^2$$

• Also $\mu^+\mu^-\gamma$ decays possible: NA60

Setup Upgrades?

- Old trigger scheme replaced by FPGA based trigger module
- Triggerless readout (TRB boards)? (A. Neiser, W. Gradl)
- Branching fractions: trigger detector under construction (M. Hillenbrand, M. Ostrick)
- Charged decays e.g. $\eta \rightarrow \pi^+\pi^-\gamma(\gamma)$ need dedicated tracking detector
- High resolution forward tracking system?

• New detector setup?

Development of high-rate TPC with? Complete new setup?

