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Whatever processes cause 0νββ, its observation 
would imply the existence of a Majorana mass term 
and thus would represent ``New Physics’’:

Schechter and Valle,82 

By adding only Standard model interactions we obtain  

Hence observing the 0νββ decay guaranties that ν are massive Majorana 
particles. But the relation between the decay rate and neutrino mass 
might be complicated, not just as in the see-saw type I. 

(ν)R → (ν)L  Majorana mass term 



The Black Box in the multiloop graph is an effective operator for 
neutrinoless double beta decay which arises from some underlying 
New Physics. It implies that neutrinoless double beta decay induces 
a non-zero effective Majorana mass for the electron neutrino, no 
matter which is the mechanism of the decay.  
 
However, the diagram is almost certainly not the only one that 
generates a non-zero effective Majorana mass for the electron 
neutrino.  
 
Duerr, Lindner and Merle in arXiv:1105.0901 have shown that 
evaluation of the graph, using T1/2 > 1025 years implies that 
δmν = 5x10-28 eV. This is clearly much too small given what we 
know from oscillation data. Therefore, other operators must 
give leading contribution to the neutrino masses.
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                QM of Majorana particles 

Weyl, Dirac and Majorana relativistic equations: 
 
Free fermions obey the Dirac equation: 
 
Lets use the following representation of the γ matrices: 
  
 
  

(�µpµ �m) = 0

�0 =

0

BB@
0 1
1 0

1

CCA ~� =

0

BB@
0 � ~�
~� 0

1

CCA �5 =

0

BB@
1 0
0 � 1

1

CCA

1

(�µpµ �m) = 0

�0 =

0

BB@
0 1
1 0

1

CCA ~� =

0

BB@
0 � ~�
~� 0

1

CCA �5 =

0

BB@
1 0
0 � 1

1

CCA

1

The Dirac equations can be then rewritten as two coupled 
two-component equations  
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Here ψ- = (1 - γ5)/2 Ψ = ψL, and ψ+ = (1 + γ5)/2 Ψ = ψR are 
the chiral projections.   



In the limit of m -> 0 these two equations decouple and we obtain 
two states with definite chirality and helicity: 
 
Thus, massless fermions obey the two-component Weyl equations 
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The states ψ+ = ψR and ψ- = ψL , so-called Weyl spinors, (also 
Called vad der Waerden spinors) 
transform independently under the two nonequivalent simplest 
representations of the Lorentz group. 

(	



For massive fermions there are two possible relativistic 
equations of motion.  
 
1) The four component Dirac equation, or its equivalent two 
 
    coupled two-component equations, with 
 
2)  Alternatively, as suggested by Majorana, there can be two 
      nonequivalent, relativistic two-component equations 
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These two Majorana equations are totally independent, as 
indicated by different energies, momenta and masses. 
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Lets compare once more the Dirac and Majorana equations 
 
D:  
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M: 

It is easy to see that they become identical if m = 0 as well 
if ψL = ε ψ*R . Similarly for the other pair and ψR = -ε ψ*L 

D: 
M: 

The four-component Dirac field is therefore equivalent to 
two degenerate, m = m’, two-component Majorana fields, with 
the corresponding relation between ψL and ε ψ*R  



 
Charge conjugation trasformation: 
 
Dirac bispinor                       transforms as 
 
Charge conjugation matrix C  in Weyl representation is 
 
Therefore the Dirac bispinor ψD cannot be an eigenstate of  
charge conjugation unless m = 0. 

*	

In contrast, Majorana bispinor                           with only two 
independent components  
transforms as      

In other words, it transforms to itself under charge conjugation. 
This is so-called Majorana condition, ψM is identical with ψM

c. 

In general, the Majorana field can be defined as  
 
 
By appropriate choice of the phase we obtain a field that is an 
eigenstate of charge conjugation with λc = +-1. 
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Neutrinos interact with chiral projection eigenstates. 
The chirality, i.e. the eigenvalues of operators (1 +- γ5)/2 is 
a conserved, Lorentz invariant quantity for massive or massles 
particles. On the other hand, the helicity, the projection of spin 
on momentum, is not conserved. For massive particle there is 
always a frame in which  the momentum points in the opposite 
direction. For massles particles chirality and helicity are identical. 
 
But the chiral projections ψL and ψR do not obey the Dirac eq. 
unless m=0. 
 
If ψ is a chirality eigenstate, i.e. γ5ψ = λψ then the charge  
conjugation state ψc is also an eigenstate, but with λc = -λ.

Also, if the Majorana state χ has the charge conjugation  
eigenvalue λc, the state γ5χ has the opposite eigenvalue –λc. 
 
Therefore, the charge conjugation eigenstates (Majorana states) 
cannot be simultaneously eigenstates of chirality. 
 



The Majorana mass term is mL νL νL
c . 

 
However, the objects νL and νL

c  are not the mass eigenstates, 
i.e. the particles with definite mass. They are just the neutrinos 
in terms of which the model is constructed. The mass term 
mL νL νL

c induces mixing of νL and νL
c . 

 
 
 
 
 

As a result of the                     mixing, the neutrino 
 
mass eigenstates are  

These mass eigenstates are explicitly charge conjugation 
eigenstates. However, they do not have fixed chirality. 



Dirac neutrino νD

νL

νR

CPT 

Lorentz, B, E 

CPT 

νR

νL

Four distinct states of a massive Dirac neutrino and the transformation among them. 
νL can be converted into the opposite helicity state by a Lorentz transformation, 
or by the torque exerted be an external B or E field. 

Lorentz 

CPT 

There are only two distinct states of a Majorana 
neutrino νM. Under the Lorentz transformation νL 
is transformed into the same state νR as by the 
Lorentz transformation. The dipole magnetic and 
electric moments must vanish. 

νL νR



Number of parameters in the mixing matrix. Why  
there are more CP phases for Majorana neutrinos? 
 
CKM matrix for quarks: In the quark mass eigenstate basis one 
can make a phase rotation of the u-type and d-type quarks, thus 
V ->   eiΦ(u) V e-iΦ(d)  , where Φ(u) = diag(φu , φc , φt) , etc. 
 
The N x N  unitary matrix V has N 2 parameters. There are 
N(N-1)/2 CP-even angles and N(N+1)/2 CP-odd phases. 
The rephasing invariance above removes (2N-1) phases, 
thus (N-1)(N-2)/2 CP-odd phases are left. 
 
So, for N = 3 there are 3 angles and 1 CP phase. This is all one 
can determine in experiments that do not violate the lepton 
number conservation. 
 
The usual convention is to have the angles θi in [0,π/2] 
and the phases  δi in [0,2π]. 
 



Now for Majorana neutrinos: 
Consider N massive Majorana neutrinos that belong to the weak 
doublets Li . In addition there are (presumably) also N weak singlet 
neutrinos, that in the see-saw mechanism are heavy (above the 
electroweak scale). 
 
In the low-energy effective theory there are only the active 
neutrinos, with the mixing matrix U invariant under 
U -> e-iΦ(E) U ηv 
Here Φ(E) involves the free phases of the charged leptons and 
ηn is a diagonal matrix with allowed eigenvalues +1 and -1. It  
takes into account the allowed rephasing for Majorana fields. 
 
Thus U contains N(N-1)/2 angles in [0,π/2],  (N-1)(N-2)/2 `Dirac’   
CP-odd phases and (N-1) additional `Majorana’ CP-odd phases.  
(N(N-1)/2 phases altogether.) These phases are in [0,2π]. 
The matrix U (often called PMNS for N=3 generations) is  
responsible for neutrino oscillations in low-energy experiments.  
 



How can we tell whether the total lepton number is  
conserved? 
A partial list of processes where the lepton number would be violated: 
 
Neutrinoless ββ decay:  (Z,A) -> (Z±2,A) + 2e(±), T1/2 > ~1026 y 
Muon conversion: µ- + (Z,A) -> e+ + (Z-2,A), BR < 10-12 
Anomalous kaon decays: K+ -> π-µ+µ+   , BR < 10-9 
 
 

Observing any of these processes would mean that the lepton 
number is not conserved, and that neutrinos are massive  
Majorana particles. 
 
In contrast production at LHC of a pair of the same charge leptons, with 
no missing energy, through production of doubly charged scalar that 
decays that way might test the lepton number violation at the 
corresponding scale, without the mν/Eν suppression. 
 

 



Lets look at this list some more. 
 
The 0νββ decay T1/2 ~ 1026 years for 136Xe  represents, in fact the  
branching ratio of only 2x10-5 , since the total lifetime of 136Xe 
is determined by the very long lived 2νββ decay, with T1/2 = 2x1021 y. 
So, the branching ratio is not a good characteristic. 
 
Muon conversion µ-	+	(Z,A)	->	e+	+	(Z-2,A)	with	branching	raCo	10-12	
corresponds to the partial lifetime T1/2 = 2.2x103 s, where I took 
just the free muon half-life as the total decay time. 
 
Similarly, the kaon decay branch K+	->	π-µ+µ+  , with branching ratio 
10-9 corresponds to the partial decay time of 12 s. 
 
Clearly, 0νββ decay dominates by a huge margin. That is so because 
many mols of the target can be studied for a long time, and the 
Avogadro number 6x1023 is much larger than typical beams. For 
example, Fermilab produces a fewx1020 protons per year on target. 
 
 



How difficult it would be to observe the lepton number violation in 
other channels than the 0νββ decay can be illustrated by considering 
e.g. the process   e-	+	AZ	→	μ+	+	AZ-2	,	or	related		, μ−	+	AZ	→	e+	+	AZ-2	.	
 
Lim, Takasugi and Yoshimura, Progr. Theor. Phys. 113, 1367 (2005) 
evaluated the cross section assuming that neutrinos are Majorana 
fermions. As an example, for Z=50, A=100 they obtain 
 
     σ  ~ 5x10-65 cm2 (meµ/100 eV)2 , 
 
Reflecting the belief at that time that the electron neutrino mass  
could be ~ 30 eV. This is ~25 orders of magnitude less than the 
weak interaction cross section for a low enegy neutrinos. 
,  



Are there any other possible way to distinguish Dirac from Majorana 
neutrinos? Yes, in principle. 
Lets consider first a rather hypothetical example: 
 
In the neutrino γ decay there are two graphs that may interfere for 
Majorana neutrinos, but only one for the Dirac neutrinos. 
 
 

Angular distribution of photons in the lab system with respect 
to the neutrino beam direction is then 

where a = 0 for Majorana and a=-1 for Dirac and left handed  
couplings. This process is unobservable in practice. Even if mν1 >> mν2

and the mixing angles are large, 1/τ ~ (mν1/eV)5 x 10-37 years-1, more  
than 25 orders of magnitude longer than the age of the Universe. 
 
 



Neutrino magnetic moments, and the distinction between the 
Dirac and Majorana neutrinos: 
 
 
 
In the following I will describe a model independent 
constraint on the  µν that depends on the magnitude of mν 
and moreover depends on the charge conjugation properties 
of neutrinos, i.e. makes it possible, at least in principle, to 
decide between Dirac and Majorana nature of neutrinos. 
 
But, before doing that I will describe how the neutrino 
magnetic moments µν can be measured, what the present 
limits are, and what are the interesting related issues. 



How can one measure µν?  
 
 
Magnetic moment could be observed in ν-e scattering by looking 
at the electron recoil spectrum; the scattered neutrino is not  
observed. The electromagnetic cross section has a characteristic 
shape 
 
                dσelm/dT = πα2 µν

2/me
2 (1-T/Eν)/T , 

where T is the recoil electron kinetic energy. 
There is a singularity as the electron recoil kinetic energy T→ 0. 

 
 

.



Nonvanishing µν will be recognizable only if the σelm is 
comparable or larger in magnitude with the well understood 
weak interaction cross section, of magnitude  
dσw/dT ~ 2GF

2me/π for small T/Eν. 
The magnitude of µν which can be probed in this way  
is then given by, obtained by equating σelm = σweak 

Considering realistic values of T it would be difficult to 
go beyond µν ~ 10-11 µB this way. Present limits are indeed 
close to that value.



Limits on µν can be also derived from bounds on unobserved 
energy loss in astrophysical objects. For sufficiently large 
µν the rate of plasmon decay into ν ν  pairs would conflict 
such bounds. However, since plasmons can also decay weakly 
into ν ν pairs the sesitivity of this probe is again limited 
by the size of the weak rate, leading to

where ωP is the plasmon frequency. Since (hωP)2 << meT, this bound is  
somewhat stronger than the limit from ν-e scattering, 
a few x 10-12 µν/µB

 but with less obvious model independece. 



Neutrino mass and magnetic moment are intimately related. In the 
orthodox SM with massless neutrinos magnetic moments vanish. 
However, in the minimally extended SM with a Dirac neutrino of 
mass mν the loops like this produce an unobservably small, but 
nonvanishing  dipole magnetic moment                                     

µν = 3eGF/(21/2 π2 8) mν = 3x10-19 mν/eV µB

(1977) 

Magnetic moments are measured in magnetons, 
eh/2mc with dimension e x length. The expression 
above must be multiplied by hc to get it in 
the proper units. GF = 1.17 x 10-5  GeV-2,,  
hc = 2 x 10-14  GeV cm, µν = 6.27 x 10-30 e cm (mν/eV) , 
µB = eh/2mec = 2 x 10-11 e cm. 
 

It is customary to express  
µν in units of the electron  
Bohr magneton. 



In analogy to the Schechter-Valle theorem, the existence 
of neutrino magnetic moment (coupling to elm. field), implies  
that neutrinos have mass. For the Dirac neutrino case the 
leading contribution to the mν is 
 
 
 
 
Where Λ is the scale of the new physics generating the µν 
(divergent as Λ2 arising from the dim = 4 neutrino mass operator. 
 
Thus if Λ ∼ 1 TeV, µν ~ 10-15 µB, orders of magnitude below the 
current limits. 
However, when Λ is not much larger than v (v = 245 GeV), the 
contributions to mν from higher dimension operators can be 
important and should be considered. 
 



For details, including the contribution to the dimension 6 neutrino mass 
operator, see Bell et al, Phys. Rev. Lett. 95, 151802(2005).  
The final expression, in the absence of fine tuning (accidental 
cancellations) is         

 µν ≤ 8 x 10-15 µB (mν/1 eV)   for Λ ≥ 1 TeV	

Thus, given the limits on mν, observation of µν for Dirac 
neutrinos is unlikely. 

The case of Majorana neutrinos is more subtle due to the relative 
flavor symmetries of mν (symmetric) and µν (antisymmetric).
The one loop contributions to the Majorana neutrino mass 
associated with the neutrino magnetic moment sum to zero for  
them. (Davidson, Gorbahn and Santamaria, Phys. Lett.B626, 151 (2005)) 



µν

µν

In order to get a nonvanishing contribution to the Majorana neutrino 
mass associated with the magnetic moment one has to make charged 
lepton mass insertions X. The resulting δmν is smaller since it 
contains the differences between the (small) charged lepton 
Yukawa couplings (factor m2

α - m2
β). The most general bound 

On the transition magnetic moment of Majorana neutrino is 
 
 
 
(N. Bell et al, Phys. Lett. B642, 377(2006)) 
Hence the constraints on the µν  of Majorana neutrinos are  
much weaker than for the Dirac neutrinos and easily compatible 
with the present experimental sensitivities.



Thus, if a neutrino magnetic moment is observed near 
its present experimental limit we would conclude that 
neutrinos are Majorana, and that the corresponding  
new scale Λ < 100 TeV. 
 
If we, further, could assume that all elements of 
the matrix µαβ are of similar magnitude, than a discovery 
of µν at, say 10-11µB would imply Λ < 10 TeV with  
a possible implication for the mechanism of 0νββ decay.  
 
Hence search for µν is in some sense complementary 
to the search for 0νββ decay. But, unlike the 0νββ decay, 
we have just an upper bound, and not a clear map where 
to look. 
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Basic formulae of the Standard Model: 
 
The gauge bosons are Wµ

i , i=1,2,3 and Bµ. 
 
After the spontaneous symmetry breaking, the massless photon 
field is 
                   A = B cosθW + W3 sinθW  , 
 
and the massive neutral weak boson field is 
 
                   Z = -B sinθW + W3 cosθW , 
 
While the massive charged weak boson fields are 
 
                   W+- = (W1        W2) /√2 
 
Masses of fermions are equal to the products of the Yukawa  
couplings and the Higgs vacuum expectation value v = 246 GeV, 
                  m = cY v/√2 . 
Thus for the electron, muon and tau cY = 2.9x10-6, 6x10-4, 0.010, 
while for an 1 eV neutrino cY would be 5.7x10-12. 
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To sketch the derivation, note that the usual graph for µν can  
be expressed in a gauge invariant form (H is the Higgs vacuum 
expectation value, and B  is the isosinglet gauge field): 

γ

W                              B      H                                      H 

=			CW	 +	CB	

One can now close the loop and obtain a quadratically divergent 
contribution to the Dirac mass 

µ µ µ

µ

For details, including the contribution to the dimension 6 neutrino mass 
operator, see Bell et al, Phys. Rev. Lett. 95, 151802(2005).  
The final expression, in the absence of fine tuning (accidental 
cancellations) is          µν ≤ 8 x 10-15 µB (mν/1 eV)   for Λ ≥ 1 TeV	
Given the limits on mν observation of µν for Dirac neutrinos is unlikely. 



It is  often convenient to express the solutions of the 
Majorana equations in the four component form. 
To do that use the fact that  -εψ*L is also the solution 
of the Majorana equation for ψL. 
In analogy, the εψ*R is the solution of the equation for ψR. 
 
Thus, the four component solutions of Majorana equations 
(however, with only two independent components) are 
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The four-component form of the Majorana fields formally 
obeys the Dirac equation, provided  we use the relation 
ψL = ε ψ*R or ψR = -ε ψ*L.
 



The case of Majorana neutrinos is more subtle due to the relative 
flavor symmetries of mν (symmetric) and µν (antisymmetric).

µν µν

These one loop contributions to the Majorana neutrino mass 
associated with the neutrino magnetic moment sum to zero. 
(Davidson, Gorbahn and Santamaria, Phys. Lett.B626, 151 (2005)) 



Magnetic moments and distinction between the  
             Dirac and Mojorana neutrinos 

For Dirac fermions mag.mom. 
changes sign under the charge 
conjugation. 

Therefore	for	them	

Thus, only Dirac neutrino can have diagonal magnetic moments, Majorana 
neutrinos cannot have them, however both can have transition magnetic
Moments.



In	ν-e	scaQering	when	
the	scaQered	neutrino	
is	not	observed,	one		
cannot	separate	the	
effects	of	diagonal	
and	transiCon	magneCc	
dipole	moments.	



Another way to obtain a limit on the µν is from the analysis of the scattering 
of solar neutrinos on electrons observed in the SuperKamiokande experiment. 
There are subtleties in that problem, because solar neutrinos are affected 
by the matter effects, the resulting µν is not necessarily the same one as for  
the reactor neutrinos (see Beacom and Vogel, Phys. Rev. Lett.83,5222(1999)). 

Plotted is the ratio of  
The observed rate to the  
expected rate with no  
oscillations. 
The dashed red line is 
obtained when µν=1.1x10-10 

µB is added to the 
oscillation signal. 
 
Even somewhat better  
limit, µν<5.4x10-11 µB, was 
obtained from the  
analysis of Borexino data, 
dominated by the lower 
energy signal from  the 
7Be decay (Phys.Rev.Lett. 
101,091302 (2008)). 


