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tection of 0⌫�� decay is out of reach for the coming gen-
eration of experiments unless the decay is driven by the
exchange of a heavy particle, the existence of which we
have not yet discovered, or some other new physics (see
Sec. II B 2). If the hierarchy is inverted, the experiments
to take place in the next decade have a good chance to
see the decay, provided they have enough material. In-
deed, Fig. 1 shows that the current experimental limit
almost touches the upper part of the inverted-hierarchy
region.

How much material will be needed to completely cover
the region, so that we can conclude in the absence of a
0⌫�� signal that either the neutrino hierarchy is normal
or neutrinos are Dirac particles? And in the event of
a signal, how will we tell whether the exchange of light
neutrinos or some other mechanism is responsible? If it
is the latter, what is the underlying new physics? To
answer any of these questions, we need accurate nuclear
matrix elements.

B. Neutrinoless Double-Beta Decay

1. Light-neutrino Exchange

The beginning of this section closely follows Ref. [29],
which itself is informed by Ref. [38]. More detailed
derivations of the �� transition rates can be found in
Refs. [39–41].

The rate for 0⌫�� decay, if we assume that it is medi-
ated by the exchange of the three light Majorana neutri-
nos and the Standard Model weak interaction as repre-
sented in Fig. 2, is
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where Ee1, Ee2 and p1, p2 are the energies and momenta
of the two emitted electrons, Ei and Ef are the energies
of the initial and final nuclear states, and Z0⌫ is an am-
plitude proportional to an S-matrix element up to delta
functions that enforce energy and momentum conserva-
tion. The S matrix depends on the product of leptonic
and hadronic currents in the e↵ective low-energy semi-
leptonic Lagrangian density:
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with Jµ
L the left-handed charge-changing hadronic cur-

rent density. Because Z0⌫ is second order in the weak-
interaction Lagrangian, it contains a lepton part that de-
pends on two space-time positions x and y, which are
contracted and ultimately integrated over:
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FIG. 2. Feynman diagram for 0⌫�� decay mediated by light-
neutrino exchange.

Here ⌫k is the Majorana mass eigenstate with mass mk

and Uek is the element of the neutrino mixing matrix
that connects electron flavor with mass eigenstate k. We
denote the charge conjugate of a field  by  c ⌘ i�2 ⇤

(in the Pauli-Dirac representation), and because ⌫k are
Majorana states we can take ⌫ck = ⌫k.
The contraction of ⌫k with ⌫ck turns out to be the usual

fermion propagator, so that the lepton part above be-
comes
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where q is the 4-momentum of the virtual neutrino. The
term with /q vanishes because the two currents are left
handed and if we neglect the very small neutrino masses
in the denominator, the decay amplitude becomes pro-
portional to
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Here � is the so-called Dirac phase, and ↵1,↵2 are Majo-
rana phases that vanish if neutrinos are Dirac particles.
We have inserted the absolute value in Eq. (5) consis-
tently with the amplitude in Eq. (1), because the expres-
sion inside can be complex.
To obtain the full amplitude Z0⌫ , one must multi-

ply the lepton part above by the nuclear matrix ele-
ment of two time-ordered hadronic currents and inte-
grate the product over x and y. Because Jµ

L(x) =
eiHx0Jµ

L(x)e
�iHx0 (H is the hadronic Hamiltonian and

the current on the right-hand side is evaluated at time
x0 = 0), one can write the matrix element of an ordinary
product of hadronic currents between initial (i) and final
(f) nuclear states as
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Schematic representation of the 0νββ
decay. The exchanged virtual neutrino 
is supposed to have only the standard 
model weak interactions. The indicated 
properties immediately follow. 

A more formal picture of the 0νββ
decay. Since the exchanged neutrino 
is light, the corresponding range is long. 
Neutrino mass here is associated with  
The See-saw type I mechanism and 
mν~v2/MN, where MN  is the very heavy  
sterile neutrino mass. 
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sterile-neutrino exchange [70, 79–82], left-right symmet-
ric models [78, 83–85], and the exchange of supersym-
metric particles [86–89] are common in the literature.

Most of the new-physics mechanisms involve the ex-
change of heavy particles. However, the direct exchange
between nucleons, represented by the contact operator in
the bottom diagram in Fig. 4 in the heavy-particle limit,
occurs less often in most models than exchange between
pions or between a pion and a nucleon, shown in the
top and middle diagrams of the figure. In �EFT each
pion propagator carries a factor ⇤2

b/m
2
⇡, where ⇤b ⇠ 500

MeV�1 GeV is the chiral-symmetry breaking scale, at
which the e↵ective theory breaks down. Each ordinary
two-nucleon–pion (NN⇡) vertex comes with a derivative,
which results in a factor of p/⇤b or m⇡/⇤b, where p is a
typical momentum. Because the contact interaction has
no derivatives in most models, pion mediation enhances
the amplitude [90]. The two-pion mode at the top of
the figure is thus generally the dominant one. The one-
pion graph in the middle is nominally smaller by a factor
of ⇤b/m⇡ and the four-nucleon graph at the bottom is
smaller by another factor of the same quantity. The lead-
ing one-pion-exchange contribution to 0+ ! 0+ 0⌫��
decay is forbidden by parity symmetry, however, and so
the middle graph ends up contributing at the same order
as the contact term [90]. The counting is di↵erent for
nuclear forces, where the contact and one-pion exchange
interactions both appear at leading order [19, 20]. The
usual one-pion exchange interaction diagram contains a
derivative at each vertex; the derivatives counteract the
pion propagator, placing the diagram at the same chiral
order as the four-nucleon contact diagram. Two-pion ex-
change occurs at higher order. Computations of matrix
elements in supersymmetric models, even when they do
not rely explicitly on �EFT, support the statement that
pion-exchange modes are the most important [91–93].

The �EFT counting should be confirmed by explicit
calculations, as additional suppression or enhancement
may occur [94]. Lattice QCD studies that explicitly in-
corporate hadronic degrees of freedom are underway [95],
and will provide accurate input for the e↵ective field the-
ory treatment of these decay modes.

The four-nucleon contact vertex represented at the
bottom of Fig. 4 is further suppressed by nuclear struc-
ture. In the light-neutrino exchange 0⌫�� decay mode,
typical internucleon distances are of the order of few fem-
tometers. The exchange of heavy particles, with mass
mH & 100 GeV [90], requires nucleons to be closer to
each other and will thus be suppressed. Pions have a
mass of m⇡ ' 138 MeV ⇡ 1.4 fm�1, a distance com-
parable to the average internucleon spacing, and so the
graphs with pions propagating between nucleons will not
be suppressed. This behavior is apparent in potentials as-
sociated with the three modes of heavy-particle exchange.
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FIG. 4. Diagrams for the two-pion-exchange (top), one-pion-
exchange (middle) and contact (bottom) modes of 0⌫�� de-
cay caused by lepton-number violation associated with the
exchange of a heavy particle.

In momentum space, they have the form
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The first of these is clearly more strongly a↵ected at high
momentum transfer than the two pion-exchange modes.
It is worth noting that the induced pseudoscalar term
discussed in Sec. II B 1 also involves pion-exchange, in
combination with the usual exchange of a light neutrino.
There the pion brings no enhancement because the light-
neutrino is already long range.
In addition to being suppressed, the contact term is

di�cult to treat well. Its matrix elements depend on the
nuclear wave function at internucleon distances that are
less than the size of a nucleon. Our many-body methods
all have nucleons as elementary degrees of freedom and
may break down on scales at which the nucleon is not
a point particle. The four-nucleon contact term is thus
likely to carry a large uncertainty. It is fortunate that
terms involving pion exchange are usually more impor-
tant.
Within specific models, heavy-particle exchange with

There is, however, another possibility. The short-range, involving 
an exchange of some heavy, often new, particle. This is therefore 
effectively a contact four nucleon vertex, represented by a dimension 
9 operator. The physics of this type of lepton number violation is 
present in the See-saw type II or type III models. Depending on 
the parameters of these models, the corresponding half-life could 
be as low or as high at the half-life involved in the light Majorana 
neutrino exchange. 
 



In the light neutrino exchange, based on the above See-Saw 
type I, the decay rate is expressed as a product of three 
factors: 
 
1/T1/2

0ν = G0ν(Q,Z) |M0ν|2 |<mββ>|2,  <mββ>=|ΣiUei
2 mi| , 

 
which represents a simple relation between the decay rate 
and the parameters of the neutrino mass matrix.  
The matrix elements of the first row of the PMNS matrix 
are, in general, complex numbers, thus Uei

2 are also complex. 
 
In the standard representation 
Ue1 = cosθ13cosθ12 , Ue2 = cosθ13sinθ12 eiα  , Ue3 = sinθ13 eiβ  , 
where α and β are unknown Majorana phases. 
 
The mass squared differences Δm2

21 and Δm2
32 have been 

measured quite accurately, and the three mixing angles are 
known as well. However, we do not know the actual absolute 
neutrino mass, and the mass ordering (or hierarchy). 
	
 
 



Most theoretical models of neutrino mass assume that neutrinos are massive Majorana fermions. The
best way to test such a hypothesis is to search for the neutrinoless double beta decay 0⌫��; its rate is
proportional to the square of the e↵ective neutrino mass mee := ||Ue1|2m1+ |Ue2|2m2e

2↵i+ |Ue3|2m3e
2�i|.

That quantity is restricted from below, mee � 14 meV (taking into account the 3� error bars of the
oscillation parameters) for IH while mee = 0 is possible for NH. Thus, if IH is realized in nature, the
next generation of the 0⌫�� experiments can decide whether neutrino are Majorana fermions or not.
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Figure 1: Pattern of neutrino masses for the normal and inverted hierarchies is shown as mass squared.
Flavor composition of the mass eigenstates as the function of the unknown CP phase �CP is indicated.
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21 stands for the atmospheric and the solar mass-squared
splitting, respectively.

Similarly to most of the parameters describing neutrino mass and mixing, the neutrino MH can be
accessed through the neutrino flavor oscillation. As shown in Table 1, there are two small parameters in
the neutrino oscillation description; the mixing angle ✓13 (sin2 ✓13 ⇠ 0.022) and the ratio �m2

21/�m2
31

(⇠ 3%). Due to this feature, most oscillation results are reasonably well described in the framework of
mixing only two neutrinos, instead of three. In this case, the probability of flavor change in the vacuum
and the oscillation length are given by

P (⌫l ! ⌫l0) = sin2 2✓ · sin2

✓
1.27 · �m2(eV2) · L(m)

E(MeV)

◆
, Lvacuum(m) =

2.48 · E⌫(MeV)

�m2(eV2)
(3)

and, obviously, the sign of �m2 (the mass hierarchy) cannot be determined in such case.
Therefore, in order to determine MH, i.e. to find e↵ects that are sensitive to the sign of �m2

31

or �m2
32, one has to either go beyond the vacuum oscillation or go beyond the simple framework

of two-neutrino mixing. Correspondingly, there are two direct ways to determine MH. In the first
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We do not know which of these two actually exists in nature. 



Historically, there are 
 > 100 experimental 
limits  on T1/2 of the 
0νββ decay. Here are  
the records expressed  
as limits on <mββ>. 
Note the approximate 
linear slope vs time 
on such semilog plot. 
However, during the 
last decade the 
complexity and cost 
of such experiments 
increased dramatically. 
The constant slope is 
no longer obviously 
visible. 

History of 0νββ decay 

76Ge,	



<mββ> as a function of 
the mass of the 
lightest meutrino. 
Normal hierarchy in 
red, inverted  
hierarchy in green. 
The reach of the 
best experiments 
is indicated by the 
blue band. The  
sensitivity of the 
different tests is 
indicated in the 
right panel by the 
corresponding nuclei.   

From Engel and Menendez 



Note as a curiosity: 
<mββ> may vanish even though all mi are nonvanishing  
and all νi  are Majorana neutrinos. 
What can we do in that case? 
In principle, although probably not in practice,  
we can look for the lepton number violation  
involving muons. 
 
Numerical example: take θ13 = 0, and Majorana phase α2 - α1 = π 
(only for this choice of phases can <mββ> vanish when θ13 = 0). 
<mββ> = 0 if m1/m2 = tan2θ12, with m2 = (m1

2 + Δmsol
2)1/2. 

That happens for m1 = 4.58 meV and m2 = 10 meV 
(this is, therefore, fine tuning). 
But then <mµe> = sin2θ12cosθ23/2×(m1 + m2) = 4.78 meV, 
Which is, at least in principle, observable using 
µ- + (Z,A) → e+ + (Z-2,A).  



Neutrino oscillations: Δm2
21 = m2

2 – m2
1 , etc.              

    observed ~10-5 eV2  (only mass square differences, independent 
                                               of Dirac vs. Majorana) 

Single beta decay: 
0.2 eV  (independent of 
 Dirac vs. Majorana) 

Double beta decay: 
0.01 eV  (only for Majorana) 

Observational cosmology: 
 ~0.01 eV (independent of 
 Dirac vs. Majorana) 

M = Σ mi 

<mββ> = |Σ mi |Uei|2 εi|  

<mβ>2 = Σ mi
2 |Uei|2  

(Majorana phases) 

What are, in general, methods to determine mν? 



– 4–

Figure 1: The left panel shows the dependence
of ⟨mββ⟩ on the absolute mass of the lightest
neutrino mmin. The middle panel shows ⟨mββ⟩
as a function of the summed neutrino mass mtot,
while the right panel depicts ⟨mββ⟩ as a func-
tion of the mass ⟨mβ⟩. In all panels the width
of the hatched areas is due to the unknown Ma-
jorana phases and thus irreducible. The allowed
areas given by the solid lines are obtained by
taking into account the errors of the oscillation
parameters (at 90% confidence level [1]) . The
two sets of solid lines correspond to the normal
(blue) and inverted(red) hierarchies. These sets
merge into each other for ⟨mββ⟩ ≥ 0.1 eV, which
corresponds to the degenerate mass pattern.

a 3-neutrino analysis. If it turns out that additional, i.e. sterile

light neutrinos exist, the allowed regions would be modified

substantially.

If the neutrinoless double-beta decay is observed, it will be

possible to fix a range of absolute values of the masses mνi
.

October 1, 2016 19:58

Relation of mββ  and other ways of neutrino mass determination. 

Blue shading  ….NH 
Pink shading   ….IH 



The two-body decays, like π+ -> µ+ + νµ  are very simple 
conceptually: Consider pion decay in its rest frame, there 
 
mν

2 = mπ
2 + mµ

2 - 2mπEµ , 
 
but the sensitivity is only to mν ~ 170 keV with little hope 
of a substantial improvement. That is so because the 
neutrino mass (squared) is a difference of two very large 
numbers (~3x1016 eV2).  

Is there anything else? 



The time delay, with respect to massless particle, is  
Δt(E) = 0.514 (mν/Eν)2D,  
where m is in eV, E in MeV, D in 10 kpc, and Δt in sec. 
But there are no massless particles emitted by SN at the same 
time as neutrinos (except, perhaps gravity waves). Alternatively,  
we might look for a time delay between the charged current,  
signal (i.e. νe) and the neutral current signal (dominated by νx).  
In addition , one might look for a broadening of the signal,  
or rearrangement according to the neutrino energy. None of that, 
realistically, is sensitive to the sub eV neutrino mass region. 
 
 
 

Another conceptually simple methods of neutrino mass 
determination, like TOF from astronomical objects, are not 
sensitive enough either. 



What do we know about hierarchies now? 
 
Capozzi et al. (1703.04471) obtain from global fit Δχ2

IH-NH = 3.6,  
i.e. about 2σ preference for NH.  3
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FIG. 1: Global 3⌫ oscillation analysis. Projections of the �2 function onto the parameters �m2, |�m2|, sin2 ✓ij , and �, for NO
(blue) and IO (red). In each panel, all the undisplayed parameters are marginalized, and the o↵set ��2

IO�NO = 3.6 is included.

p 2 [0, 1] linking any two competing hypotheses [35]). Explicit parametric connections have been worked out for
medium-baseline reactor neutrino oscillations, in terms of the mixing variable sin2 ✓12 (swapping octants between NO
and IO for �m2 > 0 in vacuum [36]) and of an empirical variable ↵ (ranging in [�1, +1] from IO to NO [37]). The
above considerations further support our adoption of Eq. (8) as a reasonable metric for the IO–NO discrimination
[25], akin to a one-parameter estimation test. For a discussion of further statistical issues and possible alternative
approaches, see also [3, 4, 38–40] and refs. therein.

With present data, the current statistical sensitivity associated to ��2
IO�NO tests appears to be limited to ⇠ 2�

(see Sec. III). Therefore, we shall conservatively report ��2 bounds on mass-mixing parameters both by separately

minimizing the �2 in NO and IO (discarding the relative ��2
IO�NO di↵erence), and by further minimizing the �2

over any ordering (including the ��2
IO�NO information), with a discussion of the relative di↵erences in the results.

Such a format has been adopted in presenting the oscillation parameter ranges in [11, 41], and is extended herein to
nonoscillation parameters.

A. Neutrino oscillations

An analysis of neutrino oscillation data has been previously presented in [9], to which we refer the reader for a
discussion of the adopted methodology and earlier literature. A partial update of [9], including novel accelerator
data shown in mid-2016, was reported in [10]. The more complete update presented herein (circa 2017) includes, with
respect to [9]: (i) the latest results from the long-baseline accelerator experiments T2K [42] and NOvA [43, 44]; (ii) the
latest far/near spectral ratio from the reactor neutrino experiment Daya Bay [45]; (iii) the most recent atmospheric
neutrino data from the Super-Kamiokande (SK) phase IV [46, 47]. The results of our oscillation data analysis are
reported graphically in Fig. 1 and numerically in Table I.

Figure 1 shows the �2 curves in terms of the six oscillation parameters (�m2, �m2, sin2 ✓12, sin
2 ✓13, sin

2 ✓23, �),
for both NO (blue) and IO (red). We find an overall preference for NO, quantified by the �2 di↵erence

��2
IO�NO = 3.6 (all oscill. data) , (9)

that is explicitly shown as an o↵set of the IO curves. The o↵set is of some relevance in the analysis of absolute mass
observables, as shown later.

They use the term ``ordering’’ 
instead of hierarchy. Thus 
NO means NH and IO means IH   

Similar	preference	for	NH	
Δχ2

IH-NH = 2.7 is found in 
the analogous global  
oscillation analysis by 
Salas et al. 1708.01186. 
See also E. Esteban et al. 
JHEP 01(2017)087.	
		



What about cosmology and astrophysics? 
 
From oscillation results we know that the sum of the three neutrino 
masses, Σ = m1 + m2 + m3, must be larger than ~0.06 eV for NH and 
~0.10 eV for IH. 
 
Σ  can be constrained and, perhaps, eventually determined, by cosmology 
in combination with various astrophysics data.  Recent Σ limits, at 95% 
CL, reach small values of 0.13 eV (Cuesta et al. 1511.05983) and 0.12 eV 
(Palanque-Delabrouille et al. 1506.05976). Based on that, Simpson et al. 
(1703.03425), use Bayesian analysis and claim a strong preference for NH 
(odds 42:1). This claim is based on using the logarithmic prior based on 
the so-called ``Bedford law’’ and is disputed (see  Schwetz et al. 1703. 
04585). 
 
Nevertheless, if Σ could be reliably restricted to values Σ < 0.1 eV, but 
still Σ > 0.06 eV, the NH would be obviously the only possibility. 
 
Note, however, that the determination of Σ  involves various model and 
systematic uncertainties (see e.g. talk by Maria Archdiacono in Erice 2017) 



Why do we expect that the familiar light neutrinos 
are Majorana fermions? 



 Masses of neutrinos are much much smaller than the 
              masses of other fermions  

Is that a “Hint of” a new mass-generating mechanism? 
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Mass hierarchies of quarks and leptons 
In this plot the mass of the heaviest particle is taken as unity 
While the patterns of up quarks, down quarks, and charged 
leptons are not really identical, the neutrino masses are  
noticeably more squeezed together. 
 

 neutrinos 

charged leptons 

down quarks 

up quarks 
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1 Introduction

The evidence for neutrino oscillations can only be understood in terms of massive neutrinos
(see Ref. [1] for a recent review). In the Standard Model (SM) of elementary particle physics,
however, neutrinos are massless. The simplest extensions of the SM model to accommodate
neutrino masses are additions of Dirac or Majorana neutrino mass terms. In order to have
Dirac mass terms, right-handed neutrinos are required, which are not present in the SM field
content. For Majorana neutrino masses, lepton number, which is an accidental symmetry
of the SM, needs to be violated. Therefore, massive neutrinos require physics beyond the
SM.

The current upper bound on neutrino masses of the order 1 eV suggests that the neutrinos
are much lighter than their charged SU(2) counterparts. As far as the different generations
are concerned, the hierarchy among neutrinos seems to be different from those present in
the other families of charged fermions, even in the hierarchical case. In addition, compared
to the quarks, leptons exhibit strong generation mixing. Therefore, theories of neutrino
mass are expected to account for their smallness as well as for the flavor structure in the
lepton sector. Though we intend to focus on the former issue in this work, the models we
consider leave room to be extended by a successful theory of flavor.

Since neutrino mass requires physics beyond the SM, it is convenient to parameterize the
impact of the heavy fields, present in the high-energy theory, by the addition of a tower of
effective operators Od of dimension d > 4 to the Lagrangian. These operators are made out
of the SM fields, are invariant under the SM gauge group [2, 3] (see also Ref. [4]) and are
non-renormalizable. They parameterize the effects of the high energy degrees of freedom
on the low energy theory order by order. The operator coefficients are weighted by inverse
powers of the scale of new physics ΛNP:

L = LSM + L
d=5
eff + L

d=6
eff + · · · , with L

d
eff ∝

1

Λd−4
NP

Od . (1)

Some of these effective operators result in corrections to the low-energy SM parameters
and in exotic couplings. As an example, consider the well known case of lepton number
conserving operators built only with lepton fields and the Higgs. These lead, at d = 6,
d = 8, etc., to charged lepton flavor violation and non-standard neutrino interactions [5–10].

It is also known that there is only one possible operator at the lowest order in the expansion,
L d=5

eff , namely, the famous Weinberg operator [2],

OW = (Lciτ 2H) (H iτ 2L) (2)

which leads, after Electroweak Symmetry Breaking (EWSB), to Majorana masses for the
neutrinos (Here L and H stand for the Standard Model lepton doublets and Higgs field,
respectively). At tree level, OW can only be mediated by a singlet fermion, a triplet scalar,
or a triplet fermion, leading to the famous type I [11–14], type II [15–20], and type III [21]
see-saw formulae, respectively (see also Ref. [22]). Compared to the electroweak scale, the
mass of the neutrinos in all three cases appears suppressed by a factor v/ΛNP, where v/

√
2

is the Vacuum Expectation Value (VEV) of the Higgs. Substituting typical values, one
obtains that the original see-saw mechanisms point towards the GUT scale.
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Physics beyond the Standard Model can be described by a tower of 
operators Od of dimension d>4. These operators are made of the 
SM fields, are invariant under the SM gauge group and are 
non-renormalizable. They are weighed by the inverse powers of 
energy scale new physics ΛNP  

If	the	ΛNP is sufficiently large, the operators with the minimum possible 
dimension d would be the ones that have the easiest consequences 
to observe.  Thus, d=5, is special in that sense.	



Weinberg already in 1979 (PLR 43, 1566) showed that there is only  
one dimension d=5 gauge-invariant operator given the particle content  
of the standard model: 
                                            L(5)  = C(5)/Λ (LcεH)(HTεL) +h.c. 

Here Lc = LTC, where C is charge conjugation and ε = -iτ2. This 
operator clearly violates the lepton number by two units and  
represents neutrino Majorana mass 
 
                                             L(M) = C(5)/Λ v2/2 (νL

c νL) + h.c. 

(Here the Higgs operator H was replaced by its vacuum expectation 
value v = 245 GeV.) 

If Λ is larger than v, the Higgs vacuum expectation value, the  
neutrinos will be `naturally’ lighter than the charged fermions. 
 
All other possible effective operators will be suppressed by higher 
powers of the energy scale Λ, i.e. Λ-d with d > 1. 



 Neutrino mass is described by the Lorentz invariant and hermition 
 mass term in the Lagrangian. 
 
Possible mass terms are either ψψ and ψcψc  or the other possibility 
are terms ψψc and ψcψ . 
 
Under the global phase transformation  ψ           eiα ψ , ψc             e-iαψc 
the first group is invariant, but the second one is not. 
 
The Dirac mass term is  ψmDψ and the Majorana mass term ψmMψc 
 
The most general mass term depends on three real paramaters, 
mD and the complex mM = m1 + im2. 



Lets rewrite the most general Lagrangian in the matrix form 

-2LM = 1
2

h
 ̄,  ̄c

i
2

64
mD mM

m⇤
M mD

3

75

2

64
 
 c

3

75

1

The eigenvalues of LM are mD    |mM| , both real. 
(Masses must be positive, if |mM| > mD , one of them 
is negative. This can be remedied by using  γ5ψ instead 
of ψ. That obeys the same Dirac equation but with –m) 
 
The eigenvectors of LM are 
 
  

2

64
�+
��

3

75 = 1p
2

2

64
e�i✓ + ei✓ c

�e�i✓ + ei✓ c

3

75

1

Both are eigenstates of charge conjugation; they are Majorana  
fields. When mM =0,  ψ and ψc are eigenstates. They are then 
Dirac fields and no eigenstates of charge conjugation.  

Here tan2θ = m2/m1 

±



In practice, we should work with the chiral projections: 

 L = 1��5
2  : ( L)c =

1+�5
2  c = ( c)R

 R = 1+�5
2  : ( R)c =

1��5
2  c = ( c)L

1

Note that the chiral projection and charge conjugation do not 
commute. 
 
Mass terms using the chiral projections are 
ψLψR and ψRψL for Dirac, and ψL(ψc)R and ψR(ψc)L for Majorana. 
 
Terms like ψLϕL or ψRϕR vanish since (1+γ5) (1-γ5) = 0. 
 
The mass terms of both kinds ``violate chirality”, i.e. connect 
L and R, mixes them. 
 



With the chiral projections the mass term eigenvalues depend, 
again, on the same three parameters, 
λ± = ½ { (mR  + mL) ± [(mR – mL)

2 + 4mD
2]1/2} 

Where mL = m1 - |m2| and mR = m1 + |m2| . 
 
The general mass term is 
 
 
It can be rewritten in terms of the charge conjugation eigenstates 
 
 
 
In the form 
 
Thus, as before in the matrix form with vectors (f,F) 
 
 
 M =

2

64
mR mD

mD mL

3

75

1

(E + ~� · ~p) L +m✏ ⇤
L = 0

mD[ ̄L R + h.c.] +mL/2[( ̄c)R L + h.c.]+ mR/2[( ̄c)L R + h.c.]

f = [ L + ( c)R]/
p
2

F = [ R + ( c)L]/
p
2

2

(E + ~� · ~p) L +m✏ ⇤
L = 0

mD[ ̄L R + h.c.] +mL/2[( ̄c)R L + h.c.]+ mR/2[( ̄c)L R + h.c.]

f = [ L + ( c)R]/
p
2

F = [ R + ( c)L]/
p
2

2

(E + ~� · ~p) L +m✏ ⇤
L = 0

mD[ ̄L R + h.c.] +mL/2[( ̄c)R L + h.c.]+ mR/2[( ̄c)L R + h.c.]

f = [ L + ( c)R]/
p
2

F = [ R + ( c)L]/
p
2

mD(f̄F + F̄ f ) +mLf̄f +mRF̄F

2



Lets consider some special cases: 
 
1)  mL = mR = 0. The eigenvalues are +mD and –mD. The negative 
      value can be removed with the γ5 trick. As expected, we 
      recover the Dirac case. 
 
2)  mL and mR both << mD. This is so-called ``quasi-Dirac” case. 
      Pair of two almost degenerate Majorana states with the 
      opposite CP eigenvalues. 
 
3)    Finally the most interesting case when mL ~ 0, mR >> mD 



Now we can consider the underlying physics. 
 
1)  Let mL be the parameter associated with the 
      known light neutrinos 
2)  Let mD be the characteristic mass of the charged 
      fermions, leptons or quarks 
3)  And let mR be the mass of a so far unknown very 
      heavy, weak singlet, neutrino. 
 
Thus mL << mD << mR 
 
The eigenvalues are  λ1,2 = mR /2 ±√(mR

2/4 – mD
2) 

 

Now we can expand and find easily 
 
λ1 = mR ,    λ2 = mD

2/mR << mD 
 
And these are the main ingredient of the see-saw type I 

M =

2

64
mR mD

mD mL

3

75

1



 
	 The See-Saw (type I) Mechanism  was suggested already in ~1980 by 
Minkowski (1977), Gell-Mann, Ramond, and Slansky(1979), Yanagida(1979), 
Mohapatra and Senjanovic (1980). It is related to the finding of Weinberg 
(1979) that there is only one operator of dimension 5 (with only one power of 
the scale ΛLNV in the denominator). It represents a neutrino Majorana  mass 
realized in the see-saw model. 

ν

NR
Very 
heavy 
neutrino

Familiar 
light 
neutrino}
{

In the light neutrino exchange, based on the above See-Saw type I, the 
decay rate is expressed in the familiar form as a product of three 
factors: 
 
									1/T1/20ν	=	G0ν(Q,Z)	|M0ν|2	|<mββ>|2,		<mββ>=|ΣiUei

2	mi|	,	
	
This is thus a simple relation between the decay rate and the 
parameters of the neutrino mass matrix.  

mν ~ mD
2/MR with mD 

some typical Dirac fermion 
mass. NR is so heavy that 
it is unobservable 



spares 



Three regions of <mββ> of interest: 
 
i) Degenerate mass region where all mi >> Δm31

2. There <mββ> > 0.05 eV. 
   T1/2 for 0νββ decay < 1026-27 y in this region. This region is explored 
   now, at least in part, with 0νββ decay experiments using ~100 kg  
   sources . Moreover, part of this mass region will be explored also by  
   the study of ordinary β decay and most of it is being explored  
   right now by the `observational cosmology’. These latter techniques  
    are independent of whether neutrinos are Majorana or Dirac fermions. 
ii) Inverted hierarchy region where m3 could be < |Δm2

31|. However,  
    quasidenegerate normal hierarchy is also possible for  
    <mββ> ~ 20-100 meV. T1/2 for 0νββ decay is 1027-28 years here, and 
    could be explored with ~ton size experiments. Such experiments,  
    with timeline ~10 years, will likely happen. 
iii) Normal mass hierarchy, <mββ> < 15 meV. It would be necessary to 
    use ~100 ton experiments. There are no realistic ideas how to 
    do it. 


