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The Puzzle of the Matter-Antimatter asymmetry

• Anti-matter is governed by the same interactions as
matter.

• Observable Universe is composed of matter.

• Anti-matter is only seen in cosmic rays and particle
physics accelerators

• The rate observed in cosmic rays consistent with
secondary emission of antiprotons
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Baryogenesis Baryogenesis at the weak scaleat the weak scale

! Under natural assumptions, there are three conditions,

    enunciated by Sakharov, that need to be fulfilled for

    baryogenesis. The SM fulfills them :

! Baryon number violation: Anomalous Processes

! C and CP violation: Quark CKM mixing

! Non-equilibrium: Possible at the electroweak phase
transition.

Conditions for Baryogenesis       



Baryon Number Violation at finite T

n Anomalous processes violate both baryon and lepton number, but 
preserve  B – L. Relevant for the explanation of the Universe 
baryon asymmetry.

n At zero T  baryon number violating processes highly suppressed

n At finite T, only Boltzman suppression

    
 

Klinkhamer and Manton ’85, Arnold and Mc Lerran ’88
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Instanton configurations may be regarded as semiclasical

amplitudes for tunelling effect between vacuum states with

different baryon number

Weak interactions:  Transition amplitude exponentially small.

No observable baryon number violating effects at T = 0
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At high temperatures, the barrier can be crossed

T<TEW

At large temperatures, transitions violating B+L At large temperatures, transitions violating B+L 

(and preserving B-L) occur very often.(and preserving B-L) occur very often.
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Baryon Asymmetry Preservation

If Baryon number generated at the electroweak phase

transition,

Baryon number erased unless the baryon number violating

processes are out of equilibrium in the broken phase.
Therefore, to preserve the baryon asymmetry, a strongly first order

phase transition is necessary:

Kuzmin, Rubakov and Shaposhnikov, ’85—’87
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Electroweak Phase Transition

Higgs Potential Evolution in the case of a first order 

Phase Transition



Finite Temperature Higgs Potential in the SM

 D receives contributions at one-loop proportional to the
sum of the couplings of all bosons and fermions squared, and is
responsible for the phenomenon of symmetry restoration

E receives contributions proportional to the sum of the cube
of all light boson particle couplings 

Since in the SM the only bosons are  the gauge bosons, and the 
quartic coupling is proportional to the square of the Higgs mass,
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CP-Violation sources 
Another problem for the realization of the SM electroweak 
baryogenesis scenario:

Absence of sufficiently strong CP-violating sources

Even assuming preservation of baryon asymmetry, baryon number 
generation several order of magnitues lower than required

12
Gavela, Hernandez, Orloff, Pene and Quimbay’94
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Figure 7: (a) shows the non-integrated CP asymmetry (∆CP ) produced by down quarks in
the narrow energy range which dominates for zero damping rate, when masses are neglected
in the internal loop. (b) shows the dramatic effect of turning on the damping rate effects, in
the same approximation.

the other hand, in the case γ ̸= 0 and in the limit m << γ 23, the expression for the peak
value of the asymmetry beautifully reduces to
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(5.26)
This was expected from naive order-of-magnitude arguments.

Finally, the results (5.25) show that non-leading effects in T give the main contribution
to the asymmetry in the case of non-vanishing damping rate and, in contrast with [11], the
up-sector dominates the asymmetry.

Very recently, Huet and Sather[28] have analyzed the problem. These authors state that
they confirm our conclusions. As we had done in ref. [1], they stress that the damping rate is
a source for quantum decoherence, and use as well an effective Dirac equation which takes it
into account. They discuss a nice physical analogy with the microscopic theory of reflection
of light. They do not use wave packets to solve the scattering problem, but spatially damped
waves, as in our heuristic treatment at the beginning of Sect. 4.

5.4 Wall thickness.

Notice that the derivation in sect. 4 is totally independent of the shape of the function
r(k). The only requirement was a singularity structure limited to a cut in the region of total
reflection. This is quite generic: only for very special wall shapes can other singularities be
expected. For instance, when the wall is not monotonous, a pole with an imaginary part
may express the decay of a quasi-bound state trapped in a potential well.

The thin wall approximation used in this paper is valid only for wall thickness l ≪ 1/6γ,
while perturbative estimates suggest l ≥ .1GeV−1 ≥ 1/6γ. The CP asymmetry, generated in

23This is valid for down external quarks, the case we considered
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Yukawa couplings) than δhR, because they give a zero contribution at this order , we can
easily obtain:
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where we have defined
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π

2
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l ), Im(M2
l ) = πλlMlC(Ml, MW ). (5.17)

It then follows that the first effect in the asymmetry appears at O(α2
w) and it comes only

from the interference of the O(αw) effects in δhb
R and δhb

L. Consequently, there is no effect
at O(α2

w) at leading order in T , because at this order δhb
R = 0. It is interesting to analyze

the expression for the non-integrated asymmetry at this order, where the GIM mechanism
is explicitly operative:
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∆(2)
CP can be shown to have the following structure:

∆(2)
CP ∼ α2

w (2iJ) T int T ext, (5.19)

where J , T int and T ext contain the expected “à la Jarlskog” behaviour of the asymmetry as
a function of the weak angles (J), the internal quark (T int) and the external quark masses
(T ext). The connection between (5.18) and (5.19) is
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Preservation of the Baryon Asymmetry
n EW Baryogenesis would be possible in the presence of new boson 

degrees of freedom with strong couplings to the Higgs.

n Supersymmetry provides a natural framework for
    this scenario.            Huet, Nelson ’91; Giudice ’91, Espinosa, Quiros,Zwirner ’93.

n Relevant SUSY particle: Superpartner of the top

n Each stop has six degrees of freedom (3 of color, two of charge)  
and coupling of order one to the Higgs

n Since 

 Higgs masses up to 120 GeV may be accomodated

M. Carena, M. Quiros, C.W. ’96, ‘98



Comments
Stop particles have explicit soft mass terms and acquire 
temperature dependent masses at high T

The effective coupling is reduced due to the presence of 
mixing. For left-handed stops much heavier than the right 
handed ones 

This is the object entering in the cubic term

In order to strengthen the phase transision the mixing 
must be small and the right-handed stop mass parameter 
must be negative.  One stop is lighter than the top !

But mixing and stop masses controls the Higgs mass !
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Comments II

• No mixing and a light stop imply that the heaviest stop must 
be far away from the LHC reach.

• One loop effective potential leads to a weak first order 
phase transition for the observed Higgs masses.  Two loop 
effects are important, and bring a dependence on the strong 
gauge coupling

• Negative stop masses also bring potential color breaking 
problems

the lightest CP-even Higgs mass of order 80 GeV. This bound was obtained for values
of m̃2

U = −m2
U of order (80 GeV)2.

The most important two loop corrections are of the form φ2 log(φ) and, as said
above, are induced by the Standard Model weak gauge bosons as well as by the stop
and gluon loops [8, 22]. It was recently noticed that the coefficient of these terms can
be efficiently obtained by the study of the three dimensional running mass of the scalar
top and Higgs fields in the dimensionally reduced theory at high temperatures [30].
Equivalently, in a four dimensional computation of the MSSM Higgs effective potential
with a heavy left-handed stop, we obtain
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where the first term comes from the Standard Model gauge boson-loop contributions,
while the second and third terms come from the light supersymmetric particle loop
contributions. The scale ΛH depends on the finite corrections, which may be obtained
by the expressions given in appendix A 2. As mentioned above, the two-loop corrections
are very important and, as has been shown in Ref. [22], they can make the phase
transition strongly first order even for mU ≃ 0.

An analogous situation occurs in the U -direction. The one-loop expression is ap-
proximately given by
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The contribution to EU inside the squared brackets comes from the transverse gluons,
while the one inside the curly brackets comes from the squark and Higgs contribu-
tions [18].

Analogous to the case of the field φ, the two loop corrections to the U -potential are
dominated by gluon and stop loops and are approximately given by

V2(U, T ) =
U2T 2
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where, as in the Higgs case, the scale ΛU may only be obtained after the finite corrections
to the effective potential, given in appendix B, are computed.

2In the numerical computations, we use the whole expression given in appendix A.
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Right-handed Stop Potential

the lightest CP-even Higgs mass of order 80 GeV. This bound was obtained for values
of m̃2

U = −m2
U of order (80 GeV)2.

The most important two loop corrections are of the form φ2 log(φ) and, as said
above, are induced by the Standard Model weak gauge bosons as well as by the stop
and gluon loops [8, 22]. It was recently noticed that the coefficient of these terms can
be efficiently obtained by the study of the three dimensional running mass of the scalar
top and Higgs fields in the dimensionally reduced theory at high temperatures [30].
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where the first term comes from the Standard Model gauge boson-loop contributions,
while the second and third terms come from the light supersymmetric particle loop
contributions. The scale ΛH depends on the finite corrections, which may be obtained
by the expressions given in appendix A 2. As mentioned above, the two-loop corrections
are very important and, as has been shown in Ref. [22], they can make the phase
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The contribution to EU inside the squared brackets comes from the transverse gluons,
while the one inside the curly brackets comes from the squark and Higgs contribu-
tions [18].

Analogous to the case of the field φ, the two loop corrections to the U -potential are
dominated by gluon and stop loops and are approximately given by
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where, as in the Higgs case, the scale ΛU may only be obtained after the finite corrections
to the effective potential, given in appendix B, are computed.

2In the numerical computations, we use the whole expression given in appendix A.
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the lightest CP-even Higgs mass of order 80 GeV. This bound was obtained for values
of m̃2

U = −m2
U of order (80 GeV)2.

The most important two loop corrections are of the form φ2 log(φ) and, as said
above, are induced by the Standard Model weak gauge bosons as well as by the stop
and gluon loops [8, 22]. It was recently noticed that the coefficient of these terms can
be efficiently obtained by the study of the three dimensional running mass of the scalar
top and Higgs fields in the dimensionally reduced theory at high temperatures [30].
Equivalently, in a four dimensional computation of the MSSM Higgs effective potential
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where the first term comes from the Standard Model gauge boson-loop contributions,
while the second and third terms come from the light supersymmetric particle loop
contributions. The scale ΛH depends on the finite corrections, which may be obtained
by the expressions given in appendix A 2. As mentioned above, the two-loop corrections
are very important and, as has been shown in Ref. [22], they can make the phase
transition strongly first order even for mU ≃ 0.
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The contribution to EU inside the squared brackets comes from the transverse gluons,
while the one inside the curly brackets comes from the squark and Higgs contribu-
tions [18].

Analogous to the case of the field φ, the two loop corrections to the U -potential are
dominated by gluon and stop loops and are approximately given by
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where, as in the Higgs case, the scale ΛU may only be obtained after the finite corrections
to the effective potential, given in appendix B, are computed.

2In the numerical computations, we use the whole expression given in appendix A.

4

A negative stop mass can induce color breaking minima

Wagner, Carena, Quiros’96 &’98

Contribution of longitudinal gluons ignored



Figure 2: Region of the mh–m t̃ parameter space for which a strongly first order phase
transition takes place is shown within solid lines. The short-dashed lines demark the
region for which a two-step phase transition may occur. The region on the right of the
dashed line and left of the short-dashed may lead to a metastable vacuum state.

21

The upper bound on the Higgs comes from the impossibility
of obtaining larger Higgs masses for the chosen parameters

But phase transition can still be strong, if one includes the
metastable regions.

For larger values of mQ, however, large logarithmic 
contributions must be resummed.  

Carena, Quiros, C.W.’98



technical framework for the treatment of the light stop scenario, in the presence of a very
heavy stop, was defined by using an effective theory approach and it was subsequently

applied to the EWBG scenario in Ref. [23]. For completeness, and in order to define a
few representative updated points, we present the results of such an analysis here.

In order to properly analyze the issue of EWBG we have complemented the zero tem-

perature results with the two-loop finite temperature effective potential [12]. Light stops
may be associated with the presence of additional minima in the stop–Higgs V (t̃, h) po-

tential, and therefore the question of vacuum stability is relevant and should be considered
by a simultaneous analysis of the stop and Higgs scalar potentials. All points shown in

Fig. 1 fulfill the vacuum stability requirement 1.
For values of the heavy stop mass mQ below a few tens of TeV, the maximal Higgs

mass that can be achieved consistent with a strong first order phase transition is about

122 GeV. The main reason is that larger values of the Higgs boson mass would demand
large values of the mixing parameter Xt, for which the effective coupling ghht̃t̃ of the

lightest stop to the Higgs is suppressed, turning the electroweak phase transition too
weak. In the effective theory the coupling ghht̃t̃ is given by
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Figure 1: The window with ⟨φ(Tn)⟩/Tn ! 1 for a gluino mass M3 = 700 GeV, mQ ≤ 50TeV

(left panel) and mQ ≤ 106 TeV (right panel).

1There is an apparent loss of perturbativity in the thermal corrections to the t̃ potential associated
with the longitudinal modes of the gluon. In our work we considered that, due to their large tempera-
ture dependent masses, the terms proportional to the third power of their thermal masses in the high
temperature expansion are efficiently screened and do not lead to any relevant contribution to the t̃
potential.
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Final Results
(Meta)stability of Color Breaking Minima assumed

M. Carena,  G. Nardini, M. Quiros, C.W.’13

Point A B C D E F G

|At/mQ| 0.5 0 0 0 0.3 0.4 0.7

tan β 15 15 2.0 1.5 1.0 1.0 1.0

Table 1: Values of the fundamental parameters at the scale mQ = 106 TeV corresponding to the

benchmark points shown in the left panel of Fig. 1.

ghht̃t̃ ≃ h2
t

(

1−
X2

t

m2
Q

)

(1 +∆g) (2.1)

where ∆g contains one-loop threshold and radiative corrections (see Ref. [31] and Fig. 1

of Ref. [33]). Such Higgs mass values, below 122 GeV, would not lead to an explanation
of the Higgs signal observed at the LHC [24–30].

For larger values of the heaviest stop mass the logarithmic corrections to the Higgs
mass increase and larger values of the Higgs mass may be obtained for the same value

of Xt/mQ, preserving the strength of the phase transition. In this paper we shall focus
on benchmark points where mQ = 106TeV. This is represented in the right panel of
Fig. 1, where it is shown that values of the Higgs mass as large as 132 GeV may be

obtained for this value of mQ and (relatively large values of) tanβ ≃ 15, corresponding to
point A. However any given point inside the EWBG region calculated at mQ = 106TeV

and moderate tanβ can also be conveniently obtained by decreasing mQ and increasing
tan β. Even for tan β ≃ 1 values of the Higgs mass about 125 GeV may be obtained

for mQ = 106 TeV, as it is represented by point G in Fig. 1. The largest values of the
Higgs mass are obtained for the largest possible values of the Higgs mixing parameter,
which in turn leads to the smallest values of the lightest stop mass consistent with a

strong electroweak phase transition. Points A and B have tan β ≃ 15 while the rest of
the points have smaller values of tan β as shown in Tab. 1, which defines the values of

the fundamental parameters for the benchmark points used in this work 2. Finally let us
stress that, although in this paper we concentrate on the MSSM case, the value of mQ

can be considerably lowered in some non-minimal UV completions of the LSS [36].

3 Light Neutralinos and the EWBG Scenario

In this section, we shall study the effects of light neutralinos on the Z and Higgs in-

visible width, as well as on the stop phenomenology within the EWBG scenario. As it
was discussed in section 1, a light stop with relevant couplings to the Higgs (leading to

2Notice that the parameters At ≃ Xt as µ = O(100GeV) ≪ mQ in the LSS.
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Combining all channels the LHC experiments found a best fit to the Higgs production 

rate  consistent with that one of a SM Higgs of mass close to 125 GeV

LHC Higgs Physics

Large Variations of Higgs couplings are still possible

But we cannot determine the Higgs couplings very accurately

As these measurements become more precise, they constrain possible 
extensions of the SM, and they could lead to the evidence of new physics.

It is worth studying what kind of effects one could obtain in well motivated 
extensions of the Standard Model, like SUSY.

Monday, August 26, 2013

The properties of the recently discovered Higgs boson are close to the SM ones

(for an extensive review, see Christensen, Han and Su’13) 

2

No BSM in the loops 
•  Fizng&the&5&main&tree&level&coupling&modifiers&+&κμ&and&

resolving&all&the&loops.&

Sep&1,&2015& Marco&Pieri&UC&San&Diego& 24&

Within2current2precision22
Higgs2couplings2scale2with22
parAcle2masses2
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The stop masses, for Xt ' mQ3 and mQ3 � mu3 , are approximately given by
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where Xt = (At � µ/ tan �). The value of the light stop mass is then given approximately

by mu3 and the value of heavier stop mass by mQ3 . For stop masses larger than the Higgs

mass, their loop contributions to the �� or gg amplitude are approximately proportional

to [58]
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m2
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+m2

˜t2
�X2
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Hence, for values of the mixing parameter X2

t > (<)(m2

˜t1
+m2

˜t2
), the stops lead to a reduction

(enhancement) of the gluon-gluon Higgs production and an enhancement (reduction) of the

Higgs to diphoton decay width. In particular, in the presence of a large hierarchy for the soft

masses, mQ3 � mu3 , and for large values of tan�, the stop loop e↵ects depend dominantly on

the relative magnitude of At with respect to mQ3 . Eq. (5) provides a good parametrization

of the stop e↵ects, but it underestimates the stop contributions when their masses are of

the order of or smaller than the Higgs mass. Specifically for stop masses of the order of a

100 GeV, they are approximately 30% larger than the value suggested by Eq. (5).

For reference, we note that we use a normalization in which the SM contributions to

these amplitudes are �At
gg ' 4 and �AW,t

�� ' �13. The stop contributions to the gluon fusion

amplitude are approximately given by �A˜t
��,gg, Eq. (5), while those to the �� amplitude are

approximately given by (8/9 �A˜t
��,gg).

Two comments are in order:

• If the stop contribution is of the same sign as the top contribution, it adds to the gluon

fusion amplitude; however it will then contribute to the suppression of the dominant

W amplitude in ��, and vice versa;

• Comparing the relative magnitudes of the SM and stop contributions, we note that

the stop e↵ects on the gluon fusion amplitude are approximately a factor of 3.5 larger

than their e↵ects on the �� amplitude, normalized to their SM values.

8

Light Stop Contribution to Higgs Loop Processes

• In a normalization in which the stops contribute  a factor 4 to the 
amplitude, the stops contribute  like

• For the diphoton rate, the SM contribution to the amplitude 
would be approximately (-15) and governed by W contributions.

• In the limit of light stops we are considering, one can see the 
appearance of the light stop coupling we discuss before. 

• This contribution grows for light stops and small mixing, and can 
cause important enhancement of the gluon fusion process rate. 

• The diphoton decay branching ratio will be affected in a negative 
way. 

Higgs Physics Constraints
Chung, Long, Wang’12



Higgs Signatures put a strong constraint on this scenario
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Figure 2: Higgs boson decay width to gluons Γ(h0 → gg) relative to the SM as a function of
mh0 and mt̃1 for M = 10, 1000 TeV and tanβ = 5, 15.

Γ(h0 → gg) computed in the LST relative to the value in the SM with the same value of the
Higgs boson mass as a function of mh0 and mt̃1 for tanβ = 5, 15 and M = 10, 1000 TeV. In
generating these figures we scan over the ranges −(150 GeV)2 ≤ m2

U3
≤ (0 GeV)2 and 0 ≤

|Xt/M | ≤ 0.9. These parameter ranges are a superset of the values that are consistent with a
strongly first-order phase transition required for EWBG. (We also exhibit the dependence of
the physical masses mt̃1 and mh0 on the underlying Lagrangian parameters in Appendix A.)

From Fig. 2 we see a significant enhancement in the decay width to gluons relative to the
SM by as much as a factor of four. Since this decay width is nearly proportional to the Higgs
production rate through gluon fusion at hadron colliders at leading order (LO), including the
Tevatron at

√
s = 1.96 TeV and the LHC at

√
s = 10−14 TeV, our results imply a strong

enhancement in this production mode.3 The enhancement is greatest for smaller values
of the Higgs boson mh0 and stop mt̃1 masses, corresponding to smaller values of m2

U3
and

|Xt|/mQ3
. Indeed, it is for these smaller mass values that the electroweak phase transition

can be strong enough to allow viable EWBG. The recent analysis of Ref. [27] finds that

3 Our computation of the Γ(h0 → gg) width is at LO. While NLO corrections are significant, their
effect is to rescale both the SM and squark LO contributions to the production rate in nearly the same
way [41, 53, 54]. Thus, we expect the bulk of these higher-order corrections to cancel in the ratios of decay
widths, interpreted as ratios of gluon fusion production rates, that we display.
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Figure 4: Inclusive pp → h0 → γγ production rate at the LHC relative to the SM as a
function of mh0 and mt̃1 for M = 10, 1000 TeV and tanβ = 5, 15.

function of mh0 and mt̃1 . As above, we consider tanβ = 5, 15 and M = 10, 1000 TeV, and
scan over the ranges −(150 GeV)2 ≤ m2

U3
≤ (0 GeV)2 and 0 ≤ |Xt/M | ≤ 0.9. We also

assume that gluon fusion makes up 83% of the inclusive production rate before including the
enhancement from a light stop, which is approximately the expected fraction contributing to
the inclusive signal for a light SM Higgs boson at the LHC with

√
s = 14 TeV [56, 57]. From

Figs. 2 and 3 we know that the Higgs boson production rate through gluon fusion is enhanced
while the branching ratio into diphotons is suppressed. The total rate is approximately
proportional to the product of these quantities. This product is ultimately enhanced in the
light stop scenario because the stop loop interferes constructively with the top quark loop
in the production rate and destructively with a more dominant W± loop in the decay width
to diphotons. In the region of parameter space consistent with a strongly first-order phase
transition, the inclusive production rate is enhanced by a factor between 1.4 and 1.6.

The light stop in the MSSM EWBG scenario will also lead to modifications of other Higgs
boson search channels. There will be an enhancement in all channels for which gluon fusion
is the dominant production mechanism. For example, the rate for inclusive pp → h0 → ZZ∗

at the LHC (assuming the gluon fusion makes up 83% of the total rate) is increased by a
factor of 1.75–3 within the parameter region consistent with viable EWBG. On the other
hand, the suppression in the h0 → γγ branching fraction reduces proportionally the signal

9

A. Menon and D. Morrisey’09

Diphoton Production

Similar results, by Cohen, Morrissey and Pierce’12 showed                                                  
Higgs physics testability of this model at the LHC 

Moreover, other authors found these results to be inconsistent with LHC data

Phase Transition vs. Higgs Rates

• Inconsistent with measured Higgs rates.

[Cohen, DM, Pierce ’12]

[Curtin, Jaiswal, Meade ’12;  Katz + Perelstein ’14]



only about 1σ above the SM predictions. Similar results are obtained at ATLAS, which

shows central values of order 2 times the SM cross sections in both production channels.
In the ZZ channel, ATLAS and CMS are in good agreement with SM predictions [24–29],

but with rates about (1.3±0.6) and
(

0.7+0.5
−0.4

)

times the SM one, and hence also consistent

with slight suppressions or enhancements of these rates. Similarly, the best fit to the
ATLAS and CMS WW production rates [24–30] are about (1.4± 0.5) and (0.6+0.5

−0.4) times

the SM one, respectively. CMS also shows a large suppression of WW production in the
vector boson fusion channel, but with a very large error. CMS also reports a suppression

of ττ production in the vector boson fusion channel [25, 29]. No such suppression is seen

in the gluon fusion channel. Overall, considering all the production and decay channels
explored at the LHC, the best fit performed at CMS shows a suppression of the vector

boson fusion induced rates with respect to those expected in the SM and gluon fusion
induced rates that are consistent with the SM ones. As we will show, such overall behavior

is consistent with the predictions of the LSS in the presence of light neutralinos.

As it is highlighted in Fig. 3, formχ0
1
! 63GeV the Higgs cannot decay into neutralinos.

In such a case the Higgs production via gluon fusion is enhanced by a factor larger than

two. Then the subsequent Higgs decay into weak bosons, whose rate is unmodified by
light stops at leading order, is enhanced by the same factor of two. This enhancement

factor is instead suppressed by ∼ 25% if the Higgs decays into photons because of the stop

destructive-interference contribution. Ifmχ0
1
" 63GeV the Higgs invisible width increases.

However for relatively large values of tan β, as point B, and for µ = M2 = 200GeV,

the coupling gh11 is suppressed, and opening kinematically the Higgs decay channel into

neutralinos reduces the visible branching ratios by at most 10%. In conclusion, for point
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Figure 4: The same as Fig. 3 but for point G and M2 = µ = 200 GeV. The Higgs mass is about

125 GeV.
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Alternative : Increase Higgs Invisible Width 

M. Carena, G. Nardini, M.Quiros, C.W., JHEP 1302 (2013) 001

LHC Data put strong constraints on this possibility. 
Only a narrow band, of neutralino masses close to threshold would be allowed in this case

The invisible width would be of order 50 percent and then, again, could be tested. 
Weak Boson Fusion processes would be suppressed.  This model is in agony.



Signal strength µ: production, decay 

•  Signal&strengths&in&different&channels&are&consistent&with&1&
(SM)&

•  Largest&difference&in&nH:&2.3σ&excess&with&respect&to&SM&
Sep&1,&2015& Marco&Pieri&UC&San&Diego& 17&

SM2BRs2assumed22 SM2producAon2σ2assumed2

SM2pCvalue2
25%2

SM2pCvalue2
60%2

Global2μ&

No Evidence of  VBF Suppression



Relic Density Constraints (                     )Relic Density Constraints (                     )

tan 7! =

Arg( ) /,M1 2 2µ !=

Arg( ) /,M1 2 2µ !=

!! Only Only CP-violating phase we consider  is the one relevant forCP-violating phase we consider  is the one relevant for

     the generation of the baryon asymmetry, namely :     the generation of the baryon asymmetry, namely :

!! Neutralino Neutralino co-annihilation with stops efficient for stop-co-annihilation with stops efficient for stop-neutralinoneutralino

          mass differences of order 15-20mass differences of order 15-20 GeV  GeV ..

       Light Stop and Relic Density Constraints

    

In the presence of a light stop,  the most relevant annihilation 
channel is the coannihilation between the stop and the neutralino 
at small mass differences.  Relic density may be naturally of the 
observed size in this region of parameters. Light Higgs resonant 
annihilation may be relevant (here Higgs mass is about 115 GeV)

C. Balazs,  M. Carena,  A. Menon, D. Morrissey,  C.W. 05 
Ciriglliano, Profumo, Ramsey-Musolf 07,  Martin’06--’07



Stop Bounds 

In the region of parameters of interest, they may be avoided 
when different decays become competitive or if there are, for 

instance, light staus or tau sneutrinos. Another challenge
for this scenario. 



Alternative Channel at the LHC
When the stops and neutralino mass difference is small, the jets 
will be soft. 

One can look for the production of stops in association with jets 
or photons. Signature: Jets (or photons) plus missing energy
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Figure 2: Projected reach in jet+E/ T channel.

was done in the photon case, we shall not include a K-factor for the signal. Using the above
defined cuts, Fig. 2 shows the projected 5σ discovery reach with the statistical significance
estimated by S/

√
B, and where systematic erros have been included.

In order to estimate the systematic errors, we have used the following two strategies, (a) and
(b):

(a) Determine background directly from data [13]. This works for jZ with Z → νν̄, which
contributes about 75% of the SM background after cuts, and can be inferred from jZ with
Z → l+l−, l = e, µ. The Z → l+l− calibration channel is about seven times smaller than the
Z → νν̄ background in the signal region (pT,ll > 1 TeV), thus leading to the error estimate
δsysB =

√
7B.

(b) Determine individual systematic error sources:

• E/ T: 5% error on E/ T: 36% effect on background, as determined by simulating jZ
with Z → νν̄.

• PDFs from reference SM processes, e.g. γ + Z with Z → l+l−: 3% (stat. error for
pT > 500 GeV).

• Lepton veto: negligible error, since this cut plays a role mainly for the jW back-
ground with W → eν or W → µν, which contributes only about 5% to the total SM
background.

Total: 36%.

The results presented in Fig. 2 make use of method (a). Searches in the jet plus E/ T

6

M. Carena, A. Freitas, C.W. ‘08

Jets plus missing Energy

54

mt̃1/GeV = 110 130 150 170 190 210 230
∆m/GeV = 10 1920 1716 1585 1360 1056 1015 845

20 1170 1085 948 877 717 676 570
30 762 746 676 679 548 551 433
40 559 516 514 507 442 444 348
50 437 449 422 428 364 343 279

Table 2: Number of signal events in the jet+E/ T channel for 100 fb−1 and for various
combinations of mt̃1 and ∆m = mt̃1 −mχ̃0

1
. The event numbers in the table have an intrinsic

statistical uncertainty of a few tens from the Monte Carlo error.

calibrated from jZ with Z → l+l− [28], and for similar reasons as in the photon case, the
SUSY background has been assumed to be small.

In order to proceed with this analysis, we have used the same cuts as in Ref. [28]:

1. Require one hard jet with pT > 100 GeV and |η| < 3.2 for the trigger.

2. Large missing energy E/ T > 1000 GeV.

3. Veto against electrons with pT > 5 GeV and muons with pT > 6 GeV in the visible
region (|η| < 2.5).

4. Require the second-hardest jet to go in the opposite hemisphere as the missing mo-
mentum (i.e. the first and second jet should go in roughly the same direction):
∆φ(pT,j2, p⃗γ) > 0.5. This cut reduces background from W → τν where the tau decay
products are emitted mostly in the opposite direction as the hard initial-state jet.

Application of these cuts leads to a SM Background of about 7 fb, corresponding to 700
events for 100 fb−1 [28].

The NLO corrections to t̃1t̃∗1 + j are not available in the literature. However, experience
from tt̄j [30] suggests that the K-factor should be close to one. Therefore, contrary to what
was done in the photon case, we shall not include a K-factor for the signal.

Using the above defined cuts, the expected number of signal events is listed in Tab. 2 for
various stop and neutralino mass values. Fig. 3 shows the projected 5σ discovery reach with
the statistical significance estimated by S/

√
B and including systematic errors. In order to

estimate the systematic errors, we have explored the following two strategies, (a) and (b):

(a) The first strategy determines the dominant SM backgrounds directly from data [28]. In
particular, the jZ background with Z → νν̄, which contributes about 75% of the SM
background after cuts, can be inferred from jZ with Z → l+l−, l = e, µ. The Z → l+l−

calibration channel is about seven times smaller than the Z → νν̄ background in the
signal region (pT,ll > 1 TeV), thus leading to the error estimate δsysB =

√
7B.

(b) Alternatively, similar to the previous section, individual systematic error sources can
be identified:

8

Including systematics associated 
with jet and missing energy 
determination. Dominant missing 
energy background, coming from 
Z’s, calibrated with the electron 
channel.

Excellent reach until masses of the 
order of 220 GeV and larger.

Full region consistent with EWBG
will be probed by combining the 
LHC with the Tevatron searches.

M. Carena, A. Freitas, C.W.’08
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Figure 3: Projected LHC 5σ discovery reach in the jet+E/ T channel. For comparison the
current and future Tevatron 95% C. L. exclusion bounds for light stops are also shown.

• A 5% error on E/ T induces a 36% uncertainty on the background, as determined
by simulating jZ with Z → νν̄.

• The PDFs can be extracted from reference SM processes, e.g. jZ with Z → l+l−.
Thus the uncertainty is mainly limited by the statistical error for the standard
candle process. For the region of high transverse momenta (pT > 500 GeV), which
is relevant for the present analysis, this leads to relatively small error of 3%.

• Systematic uncertainties associated with the lepton veto are negligible, since this
cut plays a role mainly for the jW background with W → eν or W → µν, which
contributes only about 5% to the total SM background.

In summary, this strategy yields a total estimated systematic error of about 36%,
strongly dominated by the uncertainty of the missing E/ T measurement.

It is evident that the data-driven method (a) for determining the systematic error of the SM
backgrounds leads to better results. This is different from the photon case in section 3, in
which method (b) proves to be convenient. The improvement in the results associated with
method (a) in the jet case is due to the larger statistics, while on the other hand a much
larger background uncertainty is induced for method (b) by the error in the missing energy
determination.

The results presented in Fig. 3 make use of method (a). Searches in the jet plus E/ T

channel turn out to be more promising than in the photon plus E/ T channel. They allow
to test the co-annihilation region up to relatively large values of the stop mass, of about
200 GeV or larger. Moreover, when complemented with Tevatron search analyses, they

9



Baryon Number Generation

n Baryon number violating processes out of equilibrium in the broken phase if 
phase transition is sufficiently strongly first order.

                  
     Cohen, Kaplan and Nelson, hep-ph/9302210; A. Riotto, M. Trodden, hep-ph/9901362;                    

Carena, Quiros, Riotto, Moreno, Vilja, Seco, C.W.’97--’03, 

       Konstantin, Huber, Schmidt,Prokopec’00--’06 

       Cirigliano, Profumo, Ramsey-Musolf’05--06 



In general we will relate particle number changing, or fermion number violating, rates
ΓX with the corresponding rates per unit volume γX , as,

ΓX =
6 γX

T 3
. (4.2)

The involved weak and strong sphaleron rates are:

Γws = 6 κws α5
wT, Γss = 6 κss

8

3
α4

sT , (4.3)

respectively, where κws = 20 ± 2 [44] and κss = O(1). The particle number changing
rates that will be considered both in the symmetric and in the broken phase are: ΓY2

,
corresponding to all supersymmetric and soft breaking trilinear interactions arising from
the htH2QT term in the superpotential, ΓY1

, which corresponds to the supersymmetric
trilinear scalar interaction in the Lagrangian involving the third generation squarks and
the Higgs H1, and Γµ, which corresponds to the µcH̃1H̃2 term in the Lagrangian. There are
also the Higgs number violating and axial top number violation processes, induced by the
Higgs self interactions and by top quark mass effects, with rates Γh and Γm, respectively,
that are only active in the broken phase.

We will write now a set of diffusion equations involving nQ, nT , nH1
(the density of

H1 ≡ (h1, h̃1)) and nH2
(the density of H̄2 ≡ (h̄2,

˜̄h2)), and the particle number changing
rates and CP-violating source terms discussed above. In the bubble wall frame, and
ignoring the curvature of the bubble wall, all quantities become functions of z ≡ r + vωt,
where vω is the bubble wall velocity. The diffusion equations are:

vωn′
Q =Dqn

′′
Q − ΓY

[
nQ

kQ
−

nT

kT
−

nH + ρ nh

kH

]
− Γm

[
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nT

kT

]

−6Γss

[
2

nQ

kQ
−

nT

kT
+ 9

nQ + nT

kB

]
+ γ̃Q (4.4)

vωn′
T =Dqn

′′
T + ΓY

[
nQ

kQ
−

nT

kT
−

nH + ρ nh

kH

]
+ Γm

[
nQ

kQ
−

nT

kT

]

+3Γss

[
2

nQ

kQ
−

nT

kT
+ 9

nQ + nT

kB

]
− γ̃Q (4.5)

vωn′
H =Dhn

′′
H + ΓY

[
nQ

kQ
−

nT

kT
−

nH + ρ nh

kH

]
− Γh

nH

kH
+ γ̃H̃+

(4.6)

vωn′
h =Dhn

′′
h + ρΓY

[
nQ

kQ
−

nT

kT
−

nH + nh/ρ

kH

]
− (Γh + 4Γµ)

nh

kH
+ γ̃H̃−

(4.7)

where all derivatives are with respect to z, Dq ∼ 6/T and Dh ∼ 110/T are the cor-
responding diffusion constants in the quark and Higgs sectors [46], nH ≡ nH2

+ nH1
,

nh ≡ nH2
− nH1

, kH ≡ kH1
+ kH2

, ΓY ≡ ΓY2
+ ΓY1

and ρΓY ≡ ΓY2
− ΓY1

. The parameter
ρ is in the range 0 ≤ ρ ≤ 1. In previous analyses [30, 31, 40] the limit Γµ → ∞ was
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respectively, where κws = 20 ± 2 [44] and κss = O(1). The particle number changing
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,
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also the Higgs number violating and axial top number violation processes, induced by the
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(the density of
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(the density of H̄2 ≡ (h̄2,
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−

nT
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[
2
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−
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+ 9
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+ γ̃Q (4.4)
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− γ̃Q (4.5)

vωn′
H =Dhn

′′
H + ΓY

[
nQ

kQ
−

nT

kT
−

nH + ρ nh

kH

]
− Γh

nH

kH
+ γ̃H̃+
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(4.7)
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The diffusion equations for the evaluation of the baryon
density takes into account the interaction rates and sources

Here the ki’s are statistical factors relating the densities to chemical 
potentials and the Gammas are rates per unit volume. In particular,

No Baryon number
violation:
Chiral charges generated
from CP-violating sources
(gamma’s)



with

Aλ =
2√

v2
ω + 4Γ1Dh +

√
v2

ω + 4Γ2Dh

∫ ∞

0

dζ γ̃H̃−
(ζ) e−ζλ+

A0 =
1

Dλ+

∫ ∞

0

dζ f+(z) e−ζλ+ (4.28)

and

λ± =
1

2D

{
vω ±

√
v2

ω + 4Γ D

}
. (4.29)

Since we assume the sphalerons are inactive inside the bubbles, the baryon density is
constant in the broken phase and satisfies, in the symmetric phase, an equation where nL

acts as a source [30] and there is an explicit sphaleron-induced relaxation term [45, 42]

vωn′
B(z) = −θ(−z) [nFΓwsnL(z) + RnB(z)] (4.30)

where nF = 3 is the number of families and R is the relaxation coefficient [45],

R =
5

4
nF Γws . (4.31)

Eq. (4.30) can be solved analytically and gives, in the broken phase z ≥ 0, a constant
baryon asymmetry,

nB = −
nFΓws

vω

∫ 0

−∞

dz nL(z) ezR/vω . (4.32)

Using now the explicit solutions for nH and nh given in Eqs. (4.25) and (4.22), we can
cast the explicit solution for the baryon asymmetry as,

nB = nF Γws
5kQkB + 8kT kB − 9kQkT

kH (kB + 9kQ + 9kT )

{
AH + Ah

R + vωα+

+
DBH

DR + v2
ω

}
(4.33)

where all symbols used in Eq. (4.33) have been previously defined.
The validity of our analytical approximation is guaranteed by the dominance of nH

over nh, which in turn is related to the tanβ suppression of γ̃H̃−
and the presence of

Γµ. In fact were we working in the limit Γµ → ∞ we would find that the density nh is
negligible. On the other hand, in the limit Γµ → 0 and tan β ≃ 1 we would really expect
nh > nH , due to the dominance of γ̃H̃−

over γ̃H̃+
, at least for large values of mA where the

∆β suppression of γ̃H̃+
is more severe. However small values of tanβ, as we noticed earlier

in this paper, are strongly disfavored in our scenario by recent LEP bounds on the Higgs
mass. Hence, we have found that the analytical approximation is accurate with an error
which depends on the chosen values of the supersymmetric parameters, but it is always
much smaller than the other uncertainties involved in the final calculation. In section 5
we will provide explicit comparison with the numerical result, while all plots will be done
using the numerical solution of system (4.12).
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Once the chiral charge is obtained, we can compute
the baryon number generation via sphaleron effects

Here R is the relaxation coefficient

The solution to this equation gives the final baryon                          
number density in the broken phase, namely

z

Broken 
Phase

Symmetric
Phase



Generation of Baryon Asymmetry
n Here the Wino mass has been fixed to 200 GeV, while
     the phase of the parameter     has been set to its maximal
     value.  Necessary phase given by the inverse of the displayed
     ratio. Baryon asymmetry linearly decreases for large 

M. Carena, M. Quiros, M. Seco, C.W. ‘02
Balazs, Carena, Menon, Morrissey, C.W.’05

Carena,Quiros,Seco,C.W.’02

µ

M2 = 200GeV



Electron electric dipole moment
n Asssuming that sfermions are sufficiently heavy,  dominant contribution 

comes from two-loop effects, which depend on the same phases 
necessary to generate the baryon asymmetry. 

n Chargino mass parameters scanned over their allowed values. The 
electric dipole moment is constrained to be  smaller than  

     
Balazs, Carena, Menon, Morrissey, C.W.’05

Chang, Keung, Pilaftsis ‘99, Pilaftsis ‘99 
Chang, Chang, Keung ‘00, Pilaftsis ‘02

Electric Dipole Moments (EDM)

• Two loop:

• Does not decouple!

• ACME:    de < 8.7⇥ 10�29 e cm

[Cirigliano, Li, Profumo, Ramsey-Musolf ’09]
[Chang, Keung, Pilaftsis ’98; ...]

Electric Dipole Moments (EDM)

• Two loop:

• Does not decouple!

• ACME:    de < 8.7⇥ 10�29 e cm

[Cirigliano, Li, Profumo, Ramsey-Musolf ’09]
[Chang, Keung, Pilaftsis ’98; ...]
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Comparing bino- and wino-driven EWB

• Electron EDM:

Ref. point: GeV300 10, tan200GeV,|| GeV,190 GeV,95 021 !!!!!
A
mMM "#

YL, S. Profumo, M. Ramsey-Musolf, arXiv:0811.1987

Cirigliano, Profumo, Ramsey-Musolf’06

Electric Dipole Moments (EDM)

• Two loop:

• Does not decouple!

• ACME:    de < 8.7⇥ 10�29 e cm

[Cirigliano, Li, Profumo, Ramsey-Musolf ’09]
[Chang, Keung, Pilaftsis ’98; ...]



e.g.1:  {N}MSSM

• {N}MSSM = MSSM + singlet (S):

• Singlet VEV:

• The singlet can induce a strongly first-order EWPT
 driven partly by tree-level effects with:

•                     .

• Higgs rate corrections consistent with data.

• Viable Bino-Singlino dark matter.

• Higgs rate corrections are still expected.

µeff = �hSi

mh ' 125GeV

[Pietroni ’92;  Davies et al. ’96;  Huber+Schmidt ’00;  Menon et al. ’04; ...]

[Huang et al. ’14;  Kozaczuk et al. ’14]

W � �SHu ·Hd + . . .

Baryogenesis beyond the MSSM 
e.g.1:  {N}MSSM

• {N}MSSM = MSSM + singlet (S):

• Singlet VEV:

• The singlet can induce a strongly first-order EWPT
 driven partly by tree-level effects with:

•                     .

• Higgs rate corrections consistent with data.

• Viable Bino-Singlino dark matter.

• Higgs rate corrections are still expected.

µeff = �hSi

mh ' 125GeV

[Pietroni ’92;  Davies et al. ’96;  Huber+Schmidt ’00;  Menon et al. ’04; ...]

[Huang et al. ’14;  Kozaczuk et al. ’14]

W � �SHu ·Hd + . . .

[Carena, Shah, C.W.’12]
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Instead of analyzing the potential of a specific model, one can 
try to analyze the generic potential with non-renormallizable operators

Ve↵ = (�m2 +AT 2)�2 + ��4 + ��6 + �8 + ⌘�10 + ...

Here, � / 1/⇤2,  / 1/⇤4 and ⌘ / 1/⇤6.

One of the relevant characteristics of this model is that the self
interactions of the Higgs are drastically modified. 

For instance, the trilinear coupling of the Higgs, coming from the 
third derivative of the Higgs potential at the minimum can be enhanced
with respect to the SM. 

10
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ghhh/g
SM
hhh

�cDashed line :
Critical temperture

Green and dark blue
regions lead to a first
order P.T. with a cutoff
larger than 400 and 
500 GeV, respectively. 
Enhancements of order
5 to 8 may be obtained.

Joglekar, 
Huang, Li, 
C.W.’15

Perelstein, Grojean et al
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5

Substituting k2n for n > 3, in Eq. 1 and Eq. A5, gives the complete expression for the

potential at temperature T as

V (�, T ) =
k2 + a0T

2

2

�
�†�
�
+

k4
4

�
�†�
�2

+
1X

n=3

c2n
2n⇤2(n�2)

�
�†�
�n

, (4)

�3 =
3m2

h

v

 
1 +

8v2

3m2
h

1X

n=3

n(n� 1)(n� 2)c2nv2(n�2)

2n⇤2(n�2)

!
. (5)

Assuming all c2n ' 1, the minimum value that ⇤ can acheive is 174 GeV in this formulation,

at which point the series diverges for values of � close to its vev. Using Eq. A8, we define

another quantity � given as

� =
�3

�SM
3

� 1 =
8v2

3m2
h

1X

n=3

n(n� 1)(n� 2)c2nv2(n�2)

2n⇤2(n�2)
. (6)

We restrict |c2n|< 1 and ⇤ > v to ensure the convergence of the expression for the

enhancement, Eq. (6). The values of the enhancement of �3 at a given ⇤ for all potentials

satisfyingthese conditions are shown in Fig. 1. This maximal possible value, shown in the

the upper-most black line in all the panels in Fig. 1, is obtained assuming all c2n = 1 and

leads to a large enhancement even at a relatively large value of ⇤. The only condition that

we have imposed on the potential so far is the existence of a local minimum with a second

derivative consistent with the measured Higgs mass mh ' 125 GeV. For this minimum to

represent the physical vacuum of the theory, it should be a global one. As we shall show,

the global minimum requirement imposes strong constraints on the possible enhancement of

the triple Higgs coupling.

In our further analysis, we choose not to consider the terms of the order higher than
�
�†�
�5

as they introduce negligible corrections for the cut-o↵s higher than v as shown in the

Fig. 1. We separately analyze the nature of the phase transition and the maximum positive

and negative values for � in each of the three cases corresponding to
�
�†�
�3
,
�
�†�
�4

and
�
�†�
�5
. Let us stress that these momentum independent operators preserve the custodial

symmetry and evade the tight phenomenological constraints coming from the ⇢ parameter.

The momentum dependent non-renormalizable operators, instead, contribute to the oblique

corrections and are very tightly constrained by the electroweak precision measurements. In

the further analysis they are either assumed to be forbidden or appear at a higher scales as

the ones leading to the e↵ective potential corrections, leading to a little hierarchy between

the scales [25].
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Low Energy Effective Potential Analysis

The trilinear coupling is hence modified by

This expression is generic and must be complemented by the requirement
of the physical vacuum being the global minimum of the theory at least at
scales of the order of the weak scale we are working with.  

Also, in general a first order phase transition will take place for a subset
of these potentials, which depart significantly from the SM one. 



32

6

1. Higgs Potential of order
�
�†�

�3

From Eq. 1 and Eq. A5, the potential and the triple Higgs coupling are

V (�, T ) =
k2 + a0T

2

2

�
�†�

�
+

k4
4

�
�†�

�2
+

k6
6

�
�†�

�3
(7)

�3 =
3m2

h

v

✓
1 +

8k6v4

3m2
h

◆
(8)

This case has been studied in the literature in various contexts including SFOEPT [6–8, 21–

25]. We point to a few key things pertaining to this case in the present context, while the

details are worked out in the Appendix B.

We require k6 > 0 for the stability of the potential. The requirement that there should

be a double root of the potential at � = �c for the temperature T = Tc implies

3k2
4 = 16k2Tck6. (9)

where k2T = k2 + a0T
2. This implies that the curvature of the potential at � = 0 should be

greater than zero at T = Tc for the phase transition to be of the first order. The miminum

of the potential at the critical temperature is at

�
�†
c�c

�
= v2c = �3k4

4k6
. (10)

what implies that an additional condition to obtain a first order phase transition is k4 < 0.

The value of the Higgs mass impose a relation between k4 and k6, namely

k4 + 2k6v
2 =

m2
h

2v2
(11)

Using Eq. (10) and Eq. (11) gives

k6 =
m2

h

4v2
�
v2 � 2

3v
2
c

� (12)

From where all coe�cients k2n may be written in terms of the mh, vc and v. As shown in

Appendix B using these relations one obtains

T 2
c =

k6
a

�
v2 � v2c

�✓
v2 � v2c

3

◆
(13)

Demanding both k6 and T 2
c to be positive, we get vc < v. This translates into the upper

bound on k6 using Eq. B4 and also on the contribution to enhancing the triple Higgs coupling.

k6 <
3m2

h

4v4
(14)

Minimal Modification of SM Potential

We define the critical temperature as the one in which a second non-trivial
minimum, degenerate with the origin, appears in the theory, namely
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6

1. Higgs Potential of order
�
�†�

�3

From Eq. 1 and Eq. A5, the potential and the triple Higgs coupling are

V (�, T ) =
k2 + a0T

2

2

�
�†�

�
+

k4
4

�
�†�

�2
+

k6
6

�
�†�

�3
(7)

�3 =
3m2

h

v

✓
1 +

8k6v4

3m2
h

◆
(8)

This case has been studied in the literature in various contexts including SFOEPT [6–8, 21–

25]. We point to a few key things pertaining to this case in the present context, while the

details are worked out in the Appendix B.

We require k6 > 0 for the stability of the potential. The requirement that there should

be a double root of the potential at � = �c for the temperature T = Tc implies

3k2
4 = 16k2Tck6. (9)

where k2T = k2 + a0T
2. This implies that the curvature of the potential at � = 0 should be

greater than zero at T = Tc for the phase transition to be of the first order. The miminum

of the potential at the critical temperature is at

�
�†
c�c

�
= v2c = �3k4

4k6
. (10)

what implies that an additional condition to obtain a first order phase transition is k4 < 0.

The value of the Higgs mass impose a relation between k4 and k6, namely

k4 + 2k6v
2 =

m2
h

2v2
(11)

Using Eq. (10) and Eq. (11) gives

k6 =
m2

h

4v2
�
v2 � 2

3v
2
c

� (12)

From where all coe�cients k2n may be written in terms of the mh, vc and v. As shown in

Appendix B using these relations one obtains

T 2
c =

k6
a

�
v2 � v2c

�✓
v2 � v2c

3

◆
(13)

Demanding both k6 and T 2
c to be positive, we get vc < v. This translates into the upper

bound on k6 using Eq. B4 and also on the contribution to enhancing the triple Higgs coupling.

k6 <
3m2

h

4v4
(14)

Text

From the above expressions, it is easy to obtain relations between the 
potential coefficients, the Higgs mass and the scalar VEV’s

Grojean, Servant, Wells ’05



33

6

1. Higgs Potential of order
�
�†�

�3

From Eq. 1 and Eq. A5, the potential and the triple Higgs coupling are

V (�, T ) =
k2 + a0T

2

2

�
�†�

�
+

k4
4

�
�†�

�2
+

k6
6

�
�†�

�3
(7)

�3 =
3m2

h

v

✓
1 +

8k6v4

3m2
h

◆
(8)

This case has been studied in the literature in various contexts including SFOEPT [6–8, 21–

25]. We point to a few key things pertaining to this case in the present context, while the

details are worked out in the Appendix B.

We require k6 > 0 for the stability of the potential. The requirement that there should

be a double root of the potential at � = �c for the temperature T = Tc implies

3k2
4 = 16k2Tck6. (9)

where k2T = k2 + a0T
2. This implies that the curvature of the potential at � = 0 should be

greater than zero at T = Tc for the phase transition to be of the first order. The miminum

of the potential at the critical temperature is at

�
�†
c�c

�
= v2c = �3k4

4k6
. (10)

what implies that an additional condition to obtain a first order phase transition is k4 < 0.

The value of the Higgs mass impose a relation between k4 and k6, namely

k4 + 2k6v
2 =

m2
h

2v2
(11)

Using Eq. (10) and Eq. (11) gives

k6 =
m2

h

4v2
�
v2 � 2

3v
2
c

� (12)

From where all coe�cients k2n may be written in terms of the mh, vc and v. As shown in

Appendix B using these relations one obtains

T 2
c =

k6
a

�
v2 � v2c

�✓
v2 � v2c

3

◆
(13)

Demanding both k6 and T 2
c to be positive, we get vc < v. This translates into the upper

bound on k6 using Eq. B4 and also on the contribution to enhancing the triple Higgs coupling.

k6 <
3m2

h

4v4
(14)

6

1. Higgs Potential of order
�
�†�

�3

From Eq. 1 and Eq. A5, the potential and the triple Higgs coupling are

V (�, T ) =
k2 + a0T

2

2

�
�†�

�
+

k4
4

�
�†�

�2
+

k6
6

�
�†�

�3
(7)

�3 =
3m2

h

v

✓
1 +

8k6v4

3m2
h

◆
(8)

This case has been studied in the literature in various contexts including SFOEPT [6–8, 21–

25]. We point to a few key things pertaining to this case in the present context, while the

details are worked out in the Appendix B.

We require k6 > 0 for the stability of the potential. The requirement that there should

be a double root of the potential at � = �c for the temperature T = Tc implies

3k2
4 = 16k2Tck6. (9)

where k2T = k2 + a0T
2. This implies that the curvature of the potential at � = 0 should be

greater than zero at T = Tc for the phase transition to be of the first order. The miminum

of the potential at the critical temperature is at

�
�†
c�c

�
= v2c = �3k4

4k6
. (10)

what implies that an additional condition to obtain a first order phase transition is k4 < 0.

The value of the Higgs mass impose a relation between k4 and k6, namely

k4 + 2k6v
2 =

m2
h

2v2
(11)

Using Eq. (10) and Eq. (11) gives

k6 =
m2

h

4v2
�
v2 � 2

3v
2
c

� (12)

From where all coe�cients k2n may be written in terms of the mh, vc and v. As shown in

Appendix B using these relations one obtains

T 2
c =

k6
a

�
v2 � v2c

�✓
v2 � v2c

3

◆
(13)

Demanding both k6 and T 2
c to be positive, we get vc < v. This translates into the upper

bound on k6 using Eq. B4 and also on the contribution to enhancing the triple Higgs coupling.

k6 <
3m2

h

4v4
(14)

From the requirement of positivity of the critical temperature, k6 and 
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7

Then from the Eq. (8), we conclude that the coupling can be enhanced by a factor of three

at most. Moreover, demanding v2c > 0, or equivalently k4 < 0, puts an additional constraint

on the obtention of a first order phase transition, namely

k6 >
m2

h

4v4
(15)

what implies an enhancement of a factor two thirds.

This implies that a first order phase transition may only be obtained if the following

conditions are fulfilled.

2

3
 �  2

488 GeV <⇠ ⇤ <⇠ 838 GeV (16)

where the larger enhancement � is obtained for the smaller values of the cuto↵, and the cuto↵

values were obtained assuming c6 = 1. The phase transition become stronger first order for

smaller values of the cuto↵. However, for even smaller values of the cuto↵ ⇤ < 488 GeV,

the minimum at T = 0 is no longer a global minimum and electroweak symmetry breaking

does not occur. .

In the Fig 1, we represent the possible triple Higgs coupling enhancement factor � as a

function of the cuto↵ ⇤ for di↵erent SM extensions. The particular case of
�
�†�

�3
term

are represented by the blue curve. The maximum enhancement �3 = 3�SM
3 is achieved at

⇤ ⇠ 488 GeV, which corresponds to the bound coming from Eq. (14). For the cut-o↵s above

⇤ ⇠ 838 GeV, not shown in the Figure, the phase transition is not first order anymore, but

the Higgs potential is still a viable one.

Let us note before closing that, contrary to our results in Eq. (16), in [26], it is noted that

the for a first order phase transition to take place, the enhancement due to a six-dimensional

operator to the Higgs potential can not be larger than ⇠ 20%. We find that it is due to their

assumption that c̄6 > 0 and c̄6 small 1. Neither is true in the parametrization of Ref. [26].

In their normalization, the co-e�cient of the (�†�)3 term is c̄6�
f2 , where � is the co-e�cient of

the (�†�)2 term. However, as we showed above, for a SFOEPT to take place, � < 0, which

means c̄6 < 0 is required for the stability of the potential. Also, since |�|⇠ 1
10 , c̄6v

2/f 2 can

be lower than �1 without spoiling the validity of the e↵ective theory calculation. In fact,

1We denote the coe�cient used in Ref. [26] c̄6, not to confuse it with the coe�cient c6 defined above.

and

Hence, one obtains that a first order phase transition can take place only
for certain values of the coefficients, which determine the modifications of
the triple gauge coupling. 
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Unfortunately, the test of this possibility is hard at the LHC.
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Figure 3: Total cross sections at the LO and NLO in QCD for HH production channels, at the
√

s =14 TeV LHC as a function of the
self-interaction coupling λ. The dashed (solid) lines and light- (dark-)colour bands correspond to the LO (NLO) results and to the scale and
PDF uncertainties added linearly. The SM values of the cross sections are obtained at λ/λSM = 1.
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Very few events in the SM case after cuts are implemented.
The number of events does not improve dramatically in gluon
fusion processes even for enhancements of order 5. In addition,
gain is in region of parameters where acceptance is low. 
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FIG. 1: Triple Higgs coupling enhancement factor as a function of the cuto↵ ⇤. The

upper black line shows the maximum value of � for the infinite sum with all |c2n|= 1.

The dark blue shows the values consistent with a SFOEPT for the
�
�†�

�3
potential

extension, for c6 = 1, while for the same conditions light blue is forbidden due to the

absence of electroweak symmetry breakdown. Lower black line : Maximal negative

values of � possible for order
�
�†�

�4
potential. Top row : Order

�
�†�

�4
potential

experimentally compatible regions in orange and green. Bottom row : Order
�
�†�

�5

potential experimentally compatible regions in orange, green, black.

for � < 0, c̄6v2/f 2 < �2
3 is a required condition to obtain a positive Higgs mass. Thus,

|c̄6|v2/f 2 is certainly not a small quantity, invalidating the approximation used in Ref. [26].

Higher Order Corrections to the Potential
may lead to a different regime of  δ᾽s

Right Panels :
First order PT

Left  Panels :
General Result

Upper Panels
Eighth order term additions

Lower Panesls
Tenth order terms added

Color code denote different
hierarchy between 
coefficients

In general First Order PT
correlated with positive 
enhancements of  triple 
Higgs Couplings, but in 
general negative 
enhancements possible.

Text

Blue Lines : Sixth order terms discussed before

Joglekar, Huang, 
Li, C.W. ’15
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FIG. 3: Normalized mhh distributions for �3 = �SM
3 , �3 = 2.45�SM

3 and �3 = 7�SM
3 and

�3 = � 2 �SM
3 . The cancellation between the box and triangle diagram is exact at �3 =

2.45�SM
3 at 2mt threshold, that explains the dip. Note that the distribution shifts to smaller

values as �3 increases

.

fake rate ✏j!� = 1.2⇥ 10�4 [41]. We require the following cuts

pt(b) > 30 GeV, pt(�) > 30 GeV

112.5 GeV < mbb < 137.5 GeV, 120 GeV < m�� < 130 GeV. (22)

For the SM case, we further require

mhh > 350 GeV, (23)

while for �3 > 3 �SM
3 , we require

250 GeV < mhh < 350 GeV. (24)

The results for LHC 14 TeV are displayed in Table I, and the significance reaches 5 �

at �3 ⇠ 6.5�SM
3 , and �3 ⇠ �0.2 at 14 TeV and 3000 fb �1, see Table II. One caveat

of this analysis is that we include a K-factor for the signal (and also for the ZH and tth

Invariant Mass Distribution of Pairs of Higgs for
Different values of the triple Higgs Coupling

It is clear that for large triple Higgs couplings the acceptance
increases for smaller invariant masses

Barger et al’14

Joglekar, Huang, 
Li, C.W. ’15

Calculated at NLO
(MCFM) 
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at �3 ⇠ 6.5�SM
3 , and �3 ⇠ �0.2 at 14 TeV and 3000 fb �1, see Table II. One caveat

of this analysis is that we include a K-factor for the signal (and also for the ZH and tth

15

x-sec Eq (22) + Eq (23) Eq (22) + Eq (24)

hh (�3 = �SM
3 ) 0.15 1.0⇥ 10�2 -

hh (�3 = 5�SM
3 ) 0.26 - 1.12 ⇥ 10�2

hh (�3 = 7 �SM
3 ) 0.71 - 3.3⇥ 10�2

hh (�3 = 9 �SM
3 ) 1.43 - 6.08⇥ 10�2

hh (�3 = 0) 0.29 1.33⇥10�2 -

hh (�3 = ��SM
3 ) 0.50 2.26⇥ 10�2 -

hh (�3 = �2�SM
3 ) 0.77 2.94⇥ 10�2 -

bb̄�� 5.05⇥103 1.34⇥10�2 4.0⇥10�2

cc̄�� 6.55⇥ 103 4.19 ⇥10�3 2.68⇥10�2

bb̄�j 9.66⇥106 4.60⇥10�3 1.38⇥10 �2

jj�� 7.82⇥105 2.38⇥10�3 5.26⇥10�3

tt̄h 1.39 1.40⇥10�3 2.33⇥10�3

zh 0.33 6.86⇥10�4 9.01⇥10�4

bb̄jj 7.51⇥109 5.34⇥10�4 6.47 ⇥10�4

TABLE I: Cross section in fb of the hh signal and various backgrounds expected at the LHC at
p
s = 14 TeV after applying the cuts discussed in Eq (22), (23) and (24).

�3 �SM
3 5�SM

3 7�SM
3 9�SM

3 0 -�SM
3 -2 �SM

3

S/
p
B 3.3 2.1 6.0 11 4.4 7.5 9.8

TABLE II: significance expected for hh at the LHC at
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background), but the QCD background is only considered at LO. If we assume a K-factor

of about 2 for the QCD processes, the significance will be dropped be a factor of
p
2, which

can be compensated by the fact that there are two detectors.

Due to the relatively low sensitivity of the LHC in looking for double Higgs production,

it is interesting to considered similar signatures at future colliders, in particular a future

high energy pp collider. The sensitivity will depend on many factors, including the center

of mass energy and the detector performance. To be specific, we shall consider the case of

100 TeV pp collider, assuming that the detector performance stays the same as at the LHC,
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fake rate ✏j!� = 1.2⇥ 10�4 [41]. We require the following cuts

pt(b) > 30 GeV, pt(�) > 30 GeV

112.5 GeV < mbb < 137.5 GeV, 120 GeV < m�� < 130 GeV. (22)

For the SM case, we further require

mhh > 350 GeV, (23)

while for �3 > 3 �SM
3 , we require

250 GeV < mhh < 350 GeV. (24)

The results for LHC 14 TeV are displayed in Table I, and the significance reaches 5 �

at �3 ⇠ 6.5�SM
3 , and �3 ⇠ �0.2 at 14 TeV and 3000 fb �1, see Table II. One caveat

of this analysis is that we include a K-factor for the signal (and also for the ZH and tth

14

 (GeV)hhm

300 400 500 600 700 800

σ
 1

/
h

h
/d

m
σ

d

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

SM
3λ=3λ

SM
3λ=2.453λ

SM
3λ=73λ
SM
3λ=-23λ

FIG. 3: Normalized mhh distributions for �3 = �SM
3 , �3 = 2.45�SM

3 and �3 = 7�SM
3 and

�3 = � 2 �SM
3 . The cancellation between the box and triangle diagram is exact at �3 =

2.45�SM
3 at 2mt threshold, that explains the dip. Note that the distribution shifts to smaller

values as �3 increases

.

fake rate ✏j!� = 1.2⇥ 10�4 [41]. We require the following cuts

pt(b) > 30 GeV, pt(�) > 30 GeV

112.5 GeV < mbb < 137.5 GeV, 120 GeV < m�� < 130 GeV. (22)

For the SM case, we further require

mhh > 350 GeV, (23)

while for �3 > 3 �SM
3 , we require

250 GeV < mhh < 350 GeV. (24)

The results for LHC 14 TeV are displayed in Table I, and the significance reaches 5 �

at �3 ⇠ 6.5�SM
3 , and �3 ⇠ �0.2 at 14 TeV and 3000 fb �1, see Table II. One caveat

of this analysis is that we include a K-factor for the signal (and also for the ZH and tth

14

 (GeV)hhm

300 400 500 600 700 800

σ
 1

/
h

h
/d

m
σ

d

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

SM
3λ=3λ

SM
3λ=2.453λ

SM
3λ=73λ
SM
3λ=-23λ

FIG. 3: Normalized mhh distributions for �3 = �SM
3 , �3 = 2.45�SM

3 and �3 = 7�SM
3 and

�3 = � 2 �SM
3 . The cancellation between the box and triangle diagram is exact at �3 =

2.45�SM
3 at 2mt threshold, that explains the dip. Note that the distribution shifts to smaller

values as �3 increases

.

fake rate ✏j!� = 1.2⇥ 10�4 [41]. We require the following cuts

pt(b) > 30 GeV, pt(�) > 30 GeV

112.5 GeV < mbb < 137.5 GeV, 120 GeV < m�� < 130 GeV. (22)

For the SM case, we further require

mhh > 350 GeV, (23)

while for �3 > 3 �SM
3 , we require

250 GeV < mhh < 350 GeV. (24)

The results for LHC 14 TeV are displayed in Table I, and the significance reaches 5 �

at �3 ⇠ 6.5�SM
3 , and �3 ⇠ �0.2 at 14 TeV and 3000 fb �1, see Table II. One caveat

of this analysis is that we include a K-factor for the signal (and also for the ZH and tth

Double Higgs Production at LHC 13 (3000 fb^{-1})
Standard Cuts

(23)

(24)

This cut improves the
acceptance at high
values of the triple

Higgs coupling
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x-sec Eq (22) + Eq (23) Eq (22) + Eq (24)

hh(�3 = �SM
3 ) 3.4 0.11 -

hh(�3 = 3�SM
3 ) 1.48 0.042 -

hh(�3 = 5�SM
3 ) 4.45 - 0.10

bb̄�� 1.7⇥106 0.129 0.52
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tt̄h 86.41 2.72⇥10�2 2.53⇥10�2

zh 0.88 1.76⇥10�3 1.4⇥10�3

bb̄jj 4.07⇥1010 2⇥10�3 4.7 ⇥10�3

TABLE III: Cross section of the hh signal and various backgrounds expected at a 100 TeV collider

after applying the cuts discussed in Eq (22), (23) and (24).

�3 �SM
3 3 �SM

3 5 �SM
3

S/
p
B 11 4.5 5.3

TABLE IV: significance of double Higgs production expected for hh at a 100 TeV collider for an

integrated luminosity of 3000fb�1 after applying cuts in Eq (22) + Eq (23) (�3 < 3�SM
3 ), or Eq (22)

+ Eq (24) (�3 > 3 �SM
3 )

.

performing similar cuts as the ones in the LHC analysis. We show results in Table III and

Table ??. In our analysis, we considered only positive values of �3, since as shown above,

the LHC is sensitive to the negative values. It is then easy to extrapolate the same analysis

for higher energies. The results presented in Table III show that a 100 TeV collider should

be sensitive to triple Higgs boson couplings �3 ⇠ 5�SM
3 , where the same cuts roposed in

Eq (22) were used.

B. Double Higgs production in the bb̄⌧+⌧� channel

Since the Higgs has many di↵erent significant decay channels, it is useful to think about

double Higgs production in channels di↵erent from the bb�� considered in this work. A
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necessary conditions. This gives us the formula for the co-e�cient of the �4 term. So the

only parmaeters left are ms, ts, a and �.
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We demand �2
c and T 2

v to be positive, which gives us constraints given in [24]. Note that

eq. (45) and (47) is essentially the same equation. Now lets the enhancements, where these

conditions are barely satisfied, i.e. when �2
c = 0 and T 2

c = 0.

First consider �2
c = 0. From Eq. E2 we get
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Performing a similar analysis as before, one can show that
Menon, Morrisey, C.W. ’04;  Carena, Shah, C.W. ’11;  J. Shu’14

The phase transition remains first order provided  the critical field and temperatures
are positive. These conditions cease to be fulfilled at
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�2 ts
ms

|
◆
, (E2)

V 0 (�c, Tc) = 0, V 0 (v, 0) = 0 =) T 2
c = 8

�
F (�2

c)� F (v2)
�.✓

g2 +
ḡ2
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First consider �2
c = 0. From Eq. E2 we get

m6
s�̃

2 = (am2
s � ts�

2)2 (E6)

Substituting eq. E6 in eq. E5, we get
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Substituting eq. E6 in eq. E4, we get

�̃2 =
m2

h
8v2

1� m6
s

(m2
s+v2�2)3

(E8)
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Substitute this in eq. E7 to get

r = 2v2�2 m6
s

(m2
s + v2�2)4 �m6

s (m
2
s + v2�2)

= 2v2�2 m6
s

3v2�2m6
s

�
1 + 2x+ 4

3x
2 + 1

3x
3
�

where x =
�2v2

m2
s

(E9)

This implies that r ! 2
3 in the limit of small x. Thus ! ! 5

3 ⇥SM for �c = 0 and the higher

values of ms.

Now consider the case of T 2
c = 0. From Eq. E2 we get

m2
s�̃

2
�
m2

s + �2
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2
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= (am2
s � ts�

2)2 (E10)

Substituting this in eq. E4 we get
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Substitute eq. E10 in eq. E5 we get
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16v4�2

m2
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s + v2�2)4

(E12)

Substitute eq. E11 in this to get

r = 2v2�2 m2
s (m

2
s + �2

c�
2)2

(m2
s + v2�2)4 �m2

s (m
2
s + �2

c�
2)2 (m2

s + v2�2)

= 2v2�2 (m
2
s + �2

c�
2)

(m2
s + v2�2)

m4
s (1 + x)

m4
s

h
(3v2 � 2�2

c)�
2 +

⇣
3v4 � �4

c
v2

⌘
x+ v2x2

i (E13)

So at �c = v which is the case at T 2
c = 0, r ! 2 as x ! 0. Thus at T 2

c = 0, for high ms

values, ! ! 3⇥ SM.

The region between these two cases of �2
c = 0 and T 2

c = 0 is the possible viable region.

Thus, enhancement to the triple Higgs coupling is always between 1.67 and 3. The available

region can be further narrowed down by imposing another constraint that the � < �s >=

��s(v) > 100 GeV, which is the chargino mass bound on the µ parameter of the MSSM. At

ts = 0 we find that this bound is always violated in the allowed region found above. Hence

we need t
1/3
s > 300 GeV in order to lift the µ parameter values in the viable region. Finally

we can impose strong first order phase transition constraint of �c > 0.6Tc, which is almost
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Hence, in the (�†�)3 extension of the SM, a first order phase transition can only occur

for the values of 488 GeV < ⇤ < 838 GeV, and for the values of the enhancement that vary

from 2/3 < � < 2.

For higher dimensional operators, the conditions remain similar to the (�†�)3 case, but

the analysis becomes more involved due to the presence of additional parameters, what make

a pure analytical understanding di�cult. So, we will not be able to get explicit solutions,

but will be able to constrain a surface in the space of the new parameters. All we need

to do is to optimize the enhancement in Eq. (A8) on this constrained surface. We do this

numerically in the section II

Appendix C: Minimal extension with a singlet

Minimal extension of the SM with just one singlet and its impact on the electroweak

baryogenesis has been studied in the literature [6, 7, 21, 26, 43–48]. Well motivated UV

complete scenarios such as NMSSM also have an additional singlet, which can mix with

the SM model Higgs [24]. Here we calculate the maximum enhancement of the triple Higgs

coupling that can be allowed under the constraints for electroweak baryogenesis and lower

bound it generates on the mixing with the new singlet.

Consider a general scalar potential that can be written in a canonically normalized La-

grangian for the SM extended with one singlet field �s

V (�h,�s, T ) =
m2
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Here, �h is the higgs field. The vacuum expectation value for the Higgs field is vh = 246 GeV.

We stay in the limit, where as and �s are smaller compared to ahs and �hs and drop the

as and �s terms. With this approximation, the mass squared matrix in the basis (�h �s) is

M2 =

0

@m2
11 m2

12

m2
21 m2
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1
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0

@ 2�hv
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s + �hsv

2
h

1
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where vs = � ts+ahsv2h
m2

s+�hsv2h
is the vacuum expectation value of the singlet field calculated at the

Higgs vacuum. The mixing is given as

tan 2✓ =
4v(ahs + �hsvs)

2�hv2h �m2
s � �hsv2h

=
4v(ahsm2

s � ts�hs)

(2�hv2h �m2
s � �hsv2h)(m
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s + �hsv2h)
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For the SFOEPT in such a potential, we impose the following conditions.

V (0, Tc) = V (�c, Tc) , V 0 (�c, Tc) = 0 (C4)

This leads to �2
c =

1
�hs

⇣
�m2

s +
1
�h
|ms ahs � �hs ts

ms
|
⌘
. Here �c is the value of the higgs field at

the critical Temperature (Tc). The value of S is always set to the one that minimizes the

potential at a given value of the Higgs field. The constraints on the derivatives

V 0 (�c, Tc) = 0, V 0 (vh, 0) = 0, (C5)

imply aT 2
c = 8 (F (�2

c)� F (v2)). Here F (�) = �V 0(�,0)
2� and vh = 246 GeV. In the NMSSM,

we have a = g2 + ḡ2

2 + 2y2t sin
2 � [24].

We use Equations (C2) and (C3), to convert the potential in the Eq. (C1) to the mass

basis (h1 h2) at the temperature T = 0, where h1 is the lighter of the two scalar fields. The

third derivative of the potential in Eq. (C1) with respect to h1 at the vacuum expectation

value of h1 gives the triple Higgs coupling as

�3 = 6�hvh cos
3 ✓


1 +

✓
�hsvs + ahs

�hvh

◆
tan ✓ +

�hs

�h
tan2 ✓

�
. (C6)

For ✓ = 0, we recover the SM result of �3 = 6�hvh =
3m2

h
vh

. The Higgs mass m2
h is given as

cos2 ✓m2
11 +sin2 ✓m2

22 +2sin✓ cos ✓m2
12 using Eq. C2. In the limit of small tan ✓, we expand

using Eq. C3

1
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+ ...
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As tan ✓ ⇠ �m2
12

m2
22

for small values of ✓, we have m2
22 >> m2

11,m
2
12. This means both the

terms in the above expansion are of the same order in this limit, while any other terms will

be of a higher order. In this limit of small ✓
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3m2

h
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8v4�2
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(1 + r) , (C8)

which can be translated into correction to �h as

�h ⇡ m2
h

2v2h cos
2 ✓

✓
1 + 2 tan ✓

m2
12

m2
11

+ tan2 ✓
m2

22
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11

◆
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h

2v2
+

2 (ahsm2
s � ts�hs)
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(m2
s + v2h�hs)

3 . (C9)

As expected both the corrections to the �3 and �h compared to the SM are proportional to

Scalar Mixing and the modification of the trilinear Coupling

The mass matrix reads

From here, it is easy to obtain the modified triple Higgs 
coupling, namely

Combination of parameters affecting mixing and trilinear coupling are the same
as affecting the order of the PT
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FIG. 4: �m is the mass splitting between the SM Higgs and the new singlet. �h is the SM higgs

quartic coupling. Blue contours are for the mixing parameter sin2 ✓. Red contours denote the

enhancement of the triple-Higgs coupling. ahs = 300 GeV. The orange shaded region is the region

of SFOEPT. Left : �hs = 1 Right : �hs = 0.7

the mixing. From Eqs. (C3) and (E5), it is evident that the lower bound on the enhancement

will be translated into the lower bound on the mixing.

tan 2✓ >

p
2mh

�hsv

p
r (C10)

The modification to the production cross-section due to mixing will put upper bound on the

mixing which will be translated into the upper bound on the possible enhancement in the

minimal singlet scenario. This will impact its detectability at LHC as described before.

If the above singlet is considered as a part of NMSSM then an additional constraint can

be imposed due to the chargino mass bound from LEP. The vacuum expectation value of

the new singlet should be large enough to avoid the detection of charginos at LEP.

�hsp
2
< �s >=

�hsp
2
vs > 100GeV. (C11)

The plots in Fig. 4 show compatibility of SFOEPT with the triple-Higgs coupling. The

mixing parameter sin2 ✓ is denoted by the blue contours. Higgs physics imposes already

strong constraints on the possible mixing angle of the singlet with the doublet. On one hand,

there the constraints coming from precision measurement of the SM-like Higgs properties at

Modification of the trilinear coupling and first order phase transition in 
the singlet  extended theory

Blue lines : Square of the sign of the mixing, restricted by precision Higgs 
couplings.   Black line : Excluded by search for resonances decaying into
vector boson pairs. Precisioin measurement constraints weak. 

Text

Joglekar, Huang, Li, C.W. ’15

Orange : Consistent
with FOPT



Conclusions

• LHC Higgs data rules out the realization of electroweak 
baryogenesis in the MSSM

• Extensions with singlets, like the NMSSM, still alive and 
providing an attractive alternative 

• Effective Potential analysis reveals the possibility of sizable 
or negative enhancements of the triple gauge couplings

• Acceptance in LHC analysis of double Higgs production 
depends strongly on invariant mass of the Higgs and 
optimized set of cuts should be used 



Conclusions
• The origin of the matter-antimatter asymmetry is one of the 

fundamental open questions in particle physics and cosmology

• Several proposals exist for its dynamical generation, and lead to very 
different physical phenomena

• The resolution of this question will involve experiments in the high 
energy, intensity and cosmic frontiers. 

• Of particular relevance are the Majorana nature of neutrinos and the 
presence of CP-violation, as well as the search for electric dipole 
moments, for instance, of the electron and the neutron.

• Collider physics is already constraining some scenarios. 

• The relation between the baryon and Dark Matter contributions to 
the Universe energy budget may be a clue towards the resolution of 
this puzzle.  



Parameters with strongly first order transition

n Values constrained by perturbativity
     up to the GUT scale.

n All dimensionful parameters
     varied up to 1 TeV

n Small values of the singlet
     mass parameter selected

Maximum value of 
singlet  mass

Menon,Morrissey,C.W.’04
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the cut cos φaco,lj > −0.7 is useful. Finally, two of the jets have to combine to the invariant
mass of the Z boson, while the other two jets have to combine to W mass, |mj1j2 −MZ| < 10
GeV and |mj3j4−MW| < 10 GeV. This removes most of χ̃0

2χ̃
0
4 background and is also effective

on tt̄.
After application of these cuts, the SM background is removed to a negligible level, while

still a sizeable contamination of background from χ̃0
3χ̃

0
4 is left. In total B = 245 background

events remain, compared to S = 186 events for the signal. Since the cross-section for the
neutralino process can be measured independently, as described above, it can be subtracted,
but the additional error from this procedure needs to be taken into account. The resulting
expected precision for the χ̃±

1 χ̃∓
2 cross-section is δσ±

12 = 13%.
For the chargino signal, the spectrum of the 4-jet invariant mass has an upper limit of

minv,j,max = mχ̃±
2
−mχ̃0

1
, which can be used to extract information about the heavy chargino

mass. The neutralino background typically leads to slightly smaller 4-jet invariant masses,
so that this upper edge is not contaminated. From a fit to the data, one obtains

minv,j,max = 287.2+5.4
−4.2 GeV, (49)

which together with the mχ̃0
1

mass measurement from the analysis of χ̃+
1 χ̃−

1 production di-
rectly translates into

mχ̃±
2

= 319.5+5.5
−4.3 GeV. (50)

3.3.8 Combination of sparticle measurements at ILC

Feeding in the precise measurement of the neutralino mass from the analysis of χ̃+
1 χ̃−

1 produc-
tion, the masses of the heavier neutralinos from χ̃0

2χ̃
0
4 and χ̃0

3χ̃
0
4 production can be determined

much more accurately,

mχ̃0
2

= 106.6+1.1
−1.3 GeV, mχ̃0

3
= 181.5 ± 4.9 GeV, mχ̃0

4
= 278.0+2.5

−3.5 GeV. (51)

For the lightest neutralino and the charginos, the expected errors given in the previous
sections are not improved by combining with the other neutralino observables, so that one
obtains

mχ̃0
1

= 33.3+0.4
−0.3 GeV, mχ̃±

1
= 164.98 ± 0.05 GeV, mχ̃0

4
= 319.5+5.5

−4.3 GeV. (52)

From a χ2 fit to all mass and cross-section observables, constraints on the underlying neu-
tralino and chargino parameters can be extracted. For completeness, we also allow a tripe-
singlet coupling κ as in the NMSSM. In the nMSSM, κ must be zero, but it is interesting not
to impose this requirement a priori, but see how well it can be checked from an experimental
analysis. The parameter κ enters in the (5,5)-entry of the neutralino mass matrix,

Mχ̃0 =

⎛

⎜⎜⎜⎜⎜⎜⎝

M1 0 −cβsWMZ sβsWMZ 0

0 M2 cβcWMZ −sβcWMZ 0

−cβsWMZ cβcWMZ 0 λvs λv2

sβsWMZ −sβcWMZ λvs 0 λv1

0 0 λv2 λv1 κ

⎞

⎟⎟⎟⎟⎟⎟⎠
, (53)

27

In the nMSSM, � = 0.



Upper bound on Neutralino Masses 

Values of neutralino masses below dotted line consistent with
perturbativity constraints. 

Maximum value of 
Lightest neut. mass

Perturbative limit

Menon,Morrissey,C.W.’04



Relic Density and Electroweak Baryogenesis
Region of neutralino masses selected when perturbativity
constraints are impossed.
Z-boson and Higgs boson contributions shown to guide 
the eye.

Z-width
constraint

Menon,Morrissey,C.W.’04

Proper relic density

Neutralino masses between 35 GeV and 45 GeV.
Higgs decays a�ected by presence of light
neutralinos. Large invisible decay rate.



Since dark matter is mainly a mixing betwen singlinos (dominant) 
and Higgsinos, neutralino nucleon cross section is governed by the 
new,      -induced interactions, which are well defined in the 
relevant regime of parameters

Recent results from the 
XENON 100 experiment 
tends to disfavor this scenario

Direct Dark Matter Detection

�

See also
Barger,Langacker,Lewis,McCaskey,
Shaughnessy,Yencho’07
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One could break the symmetry by self interactions of the singlet

No dimensionful parameter is included.  The superpotential  is 
protected by a Z3 symmetry,

This discrete symmetry would be broken by the singlet v.e.v.  Discrete 
symmetries are dangerous since they could lead to the formation of 
domain walls:  Different volumes of the Universe with different v.e.v.’s 
separated by massive walls.  These are ruled out by cosmology 
observations.

One could assume a small explicit breakdown of the Z3 symmetry, by 
higher order operators, which would lead to the preference of one of 
the three vacuum states. That would solve the problem without 
changing the phenomenology of the model.

W = ⇥SHuHd �
�

3
S3 + huQUHu + ...

Singlet Mechanism for the generation of µ in the NMSSM

⇥� exp(i2�/3)⇥



Ĥ1 Ĥ2 Ŝ Q̂ L̂ Û c D̂c Êc B̂ Ŵ ĝ WnMSSM

U(1)R 0 0 2 1 1 1 1 1 0 0 0 2

U(1)PQ 1 1 -2 -1 -1 0 0 0 0 0 0 0

Table 1: Charges of fields under the Abelian U(1)R and U(1)PQ symmetries of the super-
potential.

yf lead to one physical phase in the CKM quark mixing matrix, which however is constrained
to be relatively small by present data from many heavy-flavor experiments. The phase of
m12 will be addressed below.

Beyond the superpotential, new complex phases can appear in through supersymmetry
breaking. The soft supersymmetry breaking Lagrangian reads

Lsoft = m2
1H

†
1H1 + m2

2H
†
2H2 + m2

s |S|2 + (tsS + aλSH1 · H2 + h.c.)

+ (M1B̃B̃ + M2W̃ · W̃ + M3 g̃g̃ + h.c.)

+ m2
q̃ q̃†L · q̃L + m2

ũ|ũR|2 + m2
d̃
|d̃R|2 + m2

l̃
l̃†L · l̃L + m2

ẽ|ẽR|2

+ (yuAu q̃L · H2 ũ∗
R + ydAd q̃L · H1 d̃∗

R + h.c.).

(5)

Here Hi, S, q̃L, ũR, d̃R, l̃L, ẽR are the scalar components of the superfields Ĥi, Ŝ, Q̂, Û , D̂, L̂, Ê,
where the quark and lepton fields exist in three generations (the generation index has been

suppressed in the formula). B̃, W̃ , g̃ denote the fermionic components of the gauge super-
multiplets. Among the soft breaking parameters, aλ, ts, M1,2,3 and Au,d can be complex.
However not all their phases are physical. To see this, one can observe that the superpotential
is invariant under an U(1)R symmetry, with the charges listed in Tab. 1. In addition, it obeys
an approximate Peccei-Quinn symmetry U(1)PQ, which is broken by the singlet tadpole
term ∝ m2

12. Both U(1)R and U(1)PQ are broken by some of the supersymmetry breaking
parameters.

With the help of the U(1)R and U(1)PQ, the fields can be rotated so that the phases
two parameters become real. By analyzing the charges, it can be seen that the following
products remain invariant under both R- and PQ-transformations:

arg(m∗
12tsaλ),

arg(m∗
12tsMi), i = 1, 2, 3,

arg(m∗
12tsAu), (3 generations),

arg(m∗
12tsAd), (3 generations),

(6)

corresponding to 10 physical CP-violating phases in addition to the CKM phase. Without
loss of generality, the phases of m12 and ts can be chosen real, so that the physical phases
are transferred into aλ, M1,2,3 and Au,d.

In this work, for simplicity, gaugino unification is assumed, so that M1 : M2 : M3 ≈ 1 :
2 : 6. In this case, the gaugino masses carry one common phase, φM1 = φM2 = φM3 ≡ φM.
To simplify the analysis further, the phases in Au,d and aλ are set to zero.
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Ĥ1 Ĥ2 Ŝ Q̂ L̂ Û c D̂c Êc B̂ Ŵ ĝ WnMSSM

U(1)R 0 0 2 1 1 1 1 1 0 0 0 2
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potential.
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Lsoft = m2
1H

†
1H1 + m2

2H
†
2H2 + m2

s |S|2 + (tsS + aλSH1 · H2 + h.c.)

+ (M1B̃B̃ + M2W̃ · W̃ + M3 g̃g̃ + h.c.)

+ m2
q̃ q̃†L · q̃L + m2

ũ|ũR|2 + m2
d̃
|d̃R|2 + m2

l̃
l̃†L · l̃L + m2

ẽ|ẽR|2

+ (yuAu q̃L · H2 ũ∗
R + ydAd q̃L · H1 d̃∗

R + h.c.).

(5)
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an approximate Peccei-Quinn symmetry U(1)PQ, which is broken by the singlet tadpole
term ∝ m2

12. Both U(1)R and U(1)PQ are broken by some of the supersymmetry breaking
parameters.

With the help of the U(1)R and U(1)PQ, the fields can be rotated so that the phases
two parameters become real. By analyzing the charges, it can be seen that the following
products remain invariant under both R- and PQ-transformations:

arg(m∗
12tsaλ),

arg(m∗
12tsMi), i = 1, 2, 3,

arg(m∗
12tsAu), (3 generations),

arg(m∗
12tsAd), (3 generations),

(6)

corresponding to 10 physical CP-violating phases in addition to the CKM phase. Without
loss of generality, the phases of m12 and ts can be chosen real, so that the physical phases
are transferred into aλ, M1,2,3 and Au,d.

In this work, for simplicity, gaugino unification is assumed, so that M1 : M2 : M3 ≈ 1 :
2 : 6. In this case, the gaugino masses carry one common phase, φM1 = φM2 = φM3 ≡ φM.
To simplify the analysis further, the phases in Au,d and aλ are set to zero.

4

TCP-Violating Phases

The conformal (mass independent) sector of the theory is 
invariant under an R-symmetry and a PQ-symmetry, with 

These symmetries allow to absorve phases into redefinition 
of fields. The remaining phases may be absorved into the 
mass parameters. Only physical phases remain, given by

Text  Higgs Sector
         Chargino-Neutralino Sector

         S-up sector
         S-down sector
      


