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Fundamental Symmetries and Low-Energy Nuclear Physics
๏ The Universe is matter dominated at roughly 1 ppb: 

⌘ ⌘ Xp+n

X�
= 6.19(15)⇥ 10�10

๏ Sources of  CP-violation beyond the Standard Model (SM) are 
needed to generate this observed asymmetry

๏ Assuming nature is CPT symmetric, this implies T-violation 
which implies fermions will have permanent electric dipole 
moments (EDMs)

๏ This has motivated significant experimental efforts to search (or 
plan to search) for permanent EDMs in a variety of  systems  

  e, n, p, deuteron, triton, 3He, ..., 199Hg, 225Ra, 229Pa,...



Fundamental Symmetries and Low-Energy Nuclear Physics
๏ In order to interpret a measurement/constraint of  an EDM in 

a nucleon or nuclei as a value/bound of  couplings to BSM 
physics, we must have a solution to QCD in the IR

๏ Our tools of  choice are lattice QCD (LQCD) and Effective 
Field Theory (EFT)

๏ We desire to compute completely a nucleon EDM resulting 
from CP violating operators, however, yesterday, we heard a bit 
about how challenging this problem is

๏ In the meantime, we can exploit symmetries (tricks) to 
determine the long-range CP-violating 𝜋-N couplings from 
simple spectroscopic LQCD calculations which are expected to 
dominate the EDMs of  certain nuclei (eg 225Ra)



Fundamental Symmetries and Low-Energy Nuclear Physics

๏ In a large nucleus, the long-range pion exchange will dominate 
the nuclear EDM

LCPV = � ḡ0
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{ḡ1, ḡ2} ⇠ ḡ0
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๏ For the QCD theta term

๏ For more generic CP Violating operators

ḡ2 ⇠ {ḡ0, ḡ1}
m2

⇡
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�

ḡ1 ⇠ ḡ0



๏ The nuclear EDM is proportional to the Schiff  moment

Fundamental Symmetries and Low-Energy Nuclear Physics

S =
X

i 6=0

h�0|Sz|�iih�i|HCPV |�0i
E0 � Ei

+ c.c.

๏ The Schiff  parameters                     are computed with nuclear 
models under the assumption the CPV operator does not 
significantly distort the nuclear wave-function

{a0, a1, a2}

๏ For a QCD theta term only                      and thus a constraint 
on     can be made through the relation

ḡ1 ⇠ ḡ2 ⇠ 0
✓̄

ḡ0 =
�Mmd�mu

n�p

md �mu

2mdmu

md +mu
✓̄ = ↵

2mdmu

md +mu
✓̄

S =
2MNgA

F⇡
(a0ḡ0 + a1ḡ1 + a2ḡ2)



๏ The nuclear EDM is proportional to the Schiff  moment

Fundamental Symmetries and Low-Energy Nuclear Physics

S =
X

i 6=0

h�0|Sz|�iih�i|HCPV |�0i
E0 � Ei

+ c.c.

๏ 225Ra is interesting nucleus as it is octupole deformed 
๏ “stiff ” core making nuclear model calculations more reliable 
๏ nearly degenerate parity partner state 

!
!

๏                 enhancement of  

E�
1/2 � E+

1/2 = 55 KeV

{a0, a1, a2}

S =
2MNgA

F⇡
(a0ḡ0 + a1ḡ1 + a2ḡ2)

102 � 103



๏ Sources of  CP-Violation in quark sector:

Fundamental Symmetries and Low-Energy Nuclear Physics

Operator [Operator] No. Operators
4 1✓̄

quark EDM 6 2

quark Chromo-EDM 6 2

Weinberg (GGG) 6 1

4-quark 6 2

4-quark induced 6 1
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๏ Sources of  CP-Violation in quark sector:
Operator [Operator] No. Operators

4 1✓̄

quark Chromo-EDM 6 2

LCPV = � g2s ✓̄
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QCD Isospin Violation and CP-violating 𝜋-N

ḡ0 =
�Mmd�mu

n�p

md �mu

2mdmu

md +mu
✓̄ = ↵

2mdmu

md +mu
✓̄

๏ A precise determination of  the strong isospin breaking 
contribution to Mn-Mp teaches us about CP-violation



Isospin Violation and Lattice QCD
�Mmd�mu

n�p = 2.44(17) MeV

1.5 2.0 2.5 3.0 3.5

�Mmd�mu
n�p [MeV]

2.26(71) NPLQCD [hep-lat/0605014]

2.51(52) Blum et. al. [1006.1311]

3.13(57) QCDSF-UKQCD [1206.3156]

2.90(63) RM123 [1303.4896]

2.28(26) BMWc [1306.2287]

2.52(29) BMWc [1406.4088]

2.44(17) weighted average



Isospin Violation and Lattice QCD

�Mmd�mu
n�p = 2.44(17) MeV

strong isospin breaking correction

⇥Mmd�mu
n�p = �(md �mu)

ideal problem for lattice QCD

lattice average

But in (most) lattice calculations                         ?	


(except latest)

mu = md = ml

Beane, Orginos, Savage  Nucl. Phys. B768 (2007)
B. Tiburzi, AWL  Nucl. Phys.  A764 (2006)

AWL  arXiv:0904.2404
Blum, Izubuchi, etal  Phys. Rev. D82 (2010)

AWL  PoS Lattice2010 (2010)
de Divitiis etal  JHEP 1204 (2012)

Horsley etal  Phys. Rev. D86 (2012)
de Divitiis etal  Phys. Rev. D87 (2013)

Borsanyi etal  arXiv:1306.2287
Borsanyi etal  arXiv:1406.4088



Isospin Violation and Lattice QCD
strong isospin breaking correction

⇥Mmd�mu
n�p = �(md �mu)

ideal problem for lattice QCD

lattice average

mvalence
u,d 6= msea

l

“partially quenched” lattice 
QCD trick that works on the 
computer but introduces error 
which must be corrected

valence

sea

Beane, Orginos, Savage  Nucl. Phys. B768 (2007)
B. Tiburzi, AWL  Nucl. Phys.  A764 (2006)

AWL  arXiv:0904.2404
Blum, Izubuchi, etal  Phys. Rev. D82 (2010)

AWL  PoS Lattice2010 (2010)
de Divitiis etal  JHEP 1204 (2012)

Horsley etal  Phys. Rev. D86 (2012)
de Divitiis etal  Phys. Rev. D87 (2013)

Borsanyi etal  arXiv:1306.2287
Borsanyi etal  arXiv:1406.4088

�Mmd�mu
n�p = 2.44(17) MeV



Isospin Violation and Lattice QCD
strong isospin breaking correction

⇥Mmd�mu
n�p = �(md �mu)

ideal problem for lattice QCD

lattice average

can we improve this method?

of course!

“Symmetric breaking of isospin symmetry” AWL  arXiv:0904.2404

Beane, Orginos, Savage  Nucl. Phys. B768 (2007)
B. Tiburzi, AWL  Nucl. Phys.  A764 (2006)

AWL  arXiv:0904.2404
Blum, Izubuchi, etal  Phys. Rev. D82 (2010)

AWL  PoS Lattice2010 (2010)
de Divitiis etal  JHEP 1204 (2012)

Horsley etal  Phys. Rev. D86 (2012)
de Divitiis etal  Phys. Rev. D87 (2013)

Borsanyi etal  arXiv:1306.2287
Borsanyi etal  arXiv:1406.4088

�Mmd�mu
n�p = 2.44(17) MeV



Isospin Violation and Lattice QCD
“Symmetric breaking of isospin symmetry”

msea
u,d = ml, mvalence

u = ml � �, mvalence
d = ml + �

AWL  arXiv:0904.2404

Zu,d =

Z
DUµ Det(D +ml � �⇥3) e

�S[Uµ]

=

Z
DUµ Det(D +ml) det

✓
1� �2

(D +ml)2

◆
e�S[Uµ]



Isospin Violation and Lattice QCD
“Symmetric breaking of isospin symmetry”

msea
u,d = ml, mvalence

u = ml � �, mvalence
d = ml + �

AWL  arXiv:0904.2404

Zu,d =

Z
DUµ Det(D +ml � �⇥3) e

�S[Uµ]

=

Z
DUµ Det(D +ml) det

✓
1� �2

(D +ml)2

◆
e�S[Uµ]

Isospin symmetric quantities:	


Isospin violating quantities: O(�3)

error	


error

O(�2)

de Divitiis etal  JHEP 1204 (2012)

de Divitiis etal  Phys. Rev. D87 (2013)
see also
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L(4|2) =
f2

8
str
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µ⌃†�+ 2Bf2

8
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⇣
m†

Q⌃+ ⌃†mQ

⌘

+ L(PQ)
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2
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l2
4
tr(@µ⌃@⌫⌃
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16

[tr(2Bm†
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2

+
l4
8
tr(@µ⌃@

µ⌃†(2Bm†
Q⌃+ ⌃†2BmQ)) +

l7
16

[tr(2Bm†
Q⌃� ⌃†2BmQ)]

2

5

Here, the li are the SU(2) Gasser-Leutwyler coe�cients [49]. The matching of the continuum NLO Lagrangian has
been performed [50], and here we also match the partially quenched twisted mass Lagrangian;

l1 = 4L

(PQ)
1 + 2L

(PQ)
3 l2 = 4L

(PQ)
2

l3 + l4 = 16L

(PQ)
6 + 8L

(PQ)
8 l4 = 8L

(PQ)
4 + 4L

(PQ)
5

l7 = 16L

(PQ)
7 + 8L

(PQ)
8

W̃ = W

(PQ)
4 +

1
2
W

(PQ)
5 W = W

(PQ)
6 +

1
2
W

(PQ)
8

W7 = W

(PQ)
7 +

1
2
W

(PQ)
8 W

0 = W

0(PQ)
6 +

1
2
W

0(PQ)
8 (24)

A. Vacuum Alignment

To determine properties of the low energy theory, it is useful to first expand about the vacuum of the theory. In
unquenched mass-degenerate twisted mass �PT, it has been shown that the vacuum is given at NLO by [24]

⌃0 ⌘ h0|⌃|0i = exp(i!⌧3) , (25)

where ! = !0 + ✏ and

exp(i!0⌧3) =
m̂

0 + â + iµ̂⌧3

m̂

,

✏(!) = �32
f

2
â sin(!)

✓
W + 2W

0 cos(!)
â

m̂

◆
,

m̂ =
p

(m̂0 + â)2 + µ̂

2
. (26)

In the continuum limit, ✏ ! 0 as one would expect.
In our proposed partially quenched theory, the vacuum has a slight additional perturbation. To find the vacuum,

one can either minimize the potential energy (which is slightly more complicated for a partially quenched theories [51])
or one can require all single-pion vertices to vanish. Working through NLO, one can show that the Lagrangian, as
written in Eq. (20), is rotated from the vacuum by the following angle

⌃ = ⇠m⌃ph⇠m with

⇠m = exp


i

2
(!⌧

vs
3 + ✏

0
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v
3 + ✏

00PV )
�

(27)

where

! = !0 + ✏(!) ,

✏

0(!) =
�̂

2
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2 � �̂

2

"
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16â sin(!)W (PQ)
8
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2

#
,
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2 � �̂
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"
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16â sin(!)W (PQ)
8

f
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#
, (28)

and m̂ and ✏(!) are given by Eq. (26), and

⌃ph = exp
✓

2i�
f

◆
, with

� =

0

BBBBBB@

⌘u ⇡

+
�uj �ul �uũ �ud̃

⇡

�
⌘d �dj �dl �dũ �dd̃

�ju �jd ⌘j �jl �jũ �jd̃
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�ũu �ũd �ũj �ũl ⌘̃u �ũd̃
�d̃u �d̃d �d̃j �d̃l �d̃d̃ ⌘̃d

1

CCCCCCA
. (29)

Again, in the continuum limit, one finds the extra rotations of the vacuum vanish as expected. If we had used option

2, Eq. (12), then both ✏

0 and ✏

00 would have an additional O(a) shift from the tuning of !.

mval = msea � �⌧3

Partially Quenched Pion Lagrangian



Isospin Violation and Lattice QCD AWL  arXiv:0904.2404

mval = msea � �⌧3

Partially Quenched Hairpin Interactions
Partially Quenched (mixed-action) theories exhibit unitarity violating 
sicknesses - eg. double pole structure of  flavor neutral mesons.  Generally

G⌘u⌘u(p
2) =

i

p2 �m2
⌘u

+ i✏
� i

2

p2 �m2
jj

(p2 �m2
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2 G⌘u⌘d(p
2) = � i

2

p2 �m2
jj

(p2 �m2
⇡)

2

mjj = sea pion mass

It is useful to re-write Lagrangian in terms of  the fields JW Chen, D O’Connell, AWL  
hep-lat/0611003

|⇡0i = 1p
2
(|⌘ui � |⌘di) |⌘̄i = 1p

2
(|⌘ui+ |⌘di)

G⇡0 =
i

p2 �m2
⇡ + i✏
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i�2
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(p2 �m2
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�2
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⇡ ' 2B(msea
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q )

For symmetric isospin breaking:

G⇡0 =
i

p2 �m2
⇡ + i✏

�2
PQ = �̂ = B(md �mu) = 2B�G⌘̄ =

i�4
PQ

(p2 �m2
⇡ + i✏)3
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mval = msea � �⌧3

Partially Quenched Hairpin Interactions
In general, the pion mass at NLO is

m2
⇡ = 2Bml

(
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For symmetric isospin breaking:
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⇡0 = m2
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(2B�)2
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⇡

pion mass splitting free of  “error” at this order, as 
expected: splitting exactly as in QCD at NLO
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mval = msea � �⌧3

7

The first non-standard term in this expression arises from the hairpin interactions, and is the remnant of the partially
quenched chiral Log. Because the ⌘̄ propagator has extra suppression, Eq. (31) relative to the standard version of this
partially quenched propagator [52], (this happens because m̂val = m̂sea), the enhanced chiral logarithm has become
simply a constant. To clarify which contributions are physical, and which are partially quenched artifacts, we have
introduced the term

�2
PQ = �̂ , (37)

which we shall use in the remaining mass expressions. For �̂ ! 0 these expressions reduce to those of standard twisted
mass �PT. Furthermore, comparing to Ref. [57], one can verify that the mass splitting, m

2
⇡0 �m

2
⇡± , determined with

Eq. (36), is the same as that with twisted mass �PT with non-degenrate light quarks, and no partial quenching.
Therefore, with multiple values of the isospin breaking mass term �, one can determine l7 from the charged-neutral
pion mass splitting, at this order, free of partial quenching errors. Also at this order, the pion decay constants do not
receive any corrections and are given by the standard form

f⇡ = f


1� 2m̂

(4⇡f)2
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✓
m̂

⇤2

◆
+

2m̂

f

2
l

r
4(⇤) + cos !

16W̃ â

f

2

�
. (38)

D. Baryons

One can also include baryons in twisted mass �PT [25], using an extension of the heavy baryon chiral Lagrangian
formulated by Jenkins and Manohar [58, 59]. For our work, we will need the two-flavor partially quenched baryon
Lagrangian, which was first developed in Ref. [44] and later extended to NNLO in Ref. [60]. Here we use the
normalization conventions of Ref. [61], for which the twisted mass baryon chiral Lagrangian is given by
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�
Bv ·DB
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(39)

In this Lagrangian, ( ) denote the graded summation of flavor indices, first defined in Ref. [42]. The spurions are
defined as

M± =
1
4

⇣
⇠�

0†
⇠ ± ⇠

†
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with �

0 and Â defined in Eq. (21). Here, ⇠

2 = ⌃ is needed for the inclusion of the baryon fields in the chiral Lagrangian.
The axial field is defined as

Aµ =
i

2
�
⇠@µ⇠

† � ⇠

†
@µ⇠

�
, (41)

and Sµ is a spin operator [58, 59]. As with the mesons, we must match this Lagrangian to the unquenched one, given
by
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Partially Quenched Nucleon Lagrangian

7

The first non-standard term in this expression arises from the hairpin interactions, and is the remnant of the partially
quenched chiral Log. Because the ⌘̄ propagator has extra suppression, Eq. (31) relative to the standard version of this
partially quenched propagator [52], (this happens because m̂val = m̂sea), the enhanced chiral logarithm has become
simply a constant. To clarify which contributions are physical, and which are partially quenched artifacts, we have
introduced the term

�2
PQ = �̂ , (37)

which we shall use in the remaining mass expressions. For �̂ ! 0 these expressions reduce to those of standard twisted
mass �PT. Furthermore, comparing to Ref. [57], one can verify that the mass splitting, m

2
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2
⇡± , determined with

Eq. (36), is the same as that with twisted mass �PT with non-degenrate light quarks, and no partial quenching.
Therefore, with multiple values of the isospin breaking mass term �, one can determine l7 from the charged-neutral
pion mass splitting, at this order, free of partial quenching errors. Also at this order, the pion decay constants do not
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formulated by Jenkins and Manohar [58, 59]. For our work, we will need the two-flavor partially quenched baryon
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�

+
�
BA⌫T ⌫

�⇤
.

(39)

In this Lagrangian, ( ) denote the graded summation of flavor indices, first defined in Ref. [42]. The spurions are
defined as

M± =
1
4

⇣
⇠�

0†
⇠ ± ⇠

†
�

0
⇠

†
⌘

,

W± =
1
4

⇣
⇠Â

†
⇠ ± ⇠

†
Â⇠

†
⌘

, (40)

with �

0 and Â defined in Eq. (21). Here, ⇠

2 = ⌃ is needed for the inclusion of the baryon fields in the chiral Lagrangian.
The axial field is defined as

Aµ =
i

2
�
⇠@µ⇠

† � ⇠

†
@µ⇠

�
, (41)

and Sµ is a spin operator [58, 59]. As with the mesons, we must match this Lagrangian to the unquenched one, given
by

L = Nv ·DN +
↵M

(4⇡f)
NM+N +

�M

(4⇡f)
NN tr(M+) +

�W

(4⇡f)
NN tr(W+)

+ (Tµv ·D Tµ) + � (TµTµ) +
�M

(4⇡f)
(TµM+Tµ) +

�M

(4⇡f)
(TµTµ) tr(M+) +

�W

(4⇡f)
(TµTµ) tr(W+)

+ 2 gA NS ·A N � 2 g�� TµS ·A Tµ + g�N

h
T

kji

µ A

µ,i0

i ✏ji0Nk + h.c.

i
. (42)
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Performing the matching, one finds

↵M =
2
3
↵

(PQ)
M � 1

3
�

(PQ)
M ,

�M = �

(PQ)
M +

1
6
↵

(PQ)
M +

2
3
�

(PQ)
M ,

�M = �

(PQ)
M , �̄M = �̄

(PQ)
M ,

gA =
2
3
↵

(PQ) � 1
3
�

(PQ)
, g1 =

1
3
↵

(PQ) +
4
3
�

PQ)
,

g�� = H , g�N = �C, (43)

and

�W = �

(PQ)
W , �̄W = �̄

(PQ)
W , (44)

for the discretization operators. Using the partially quenched Lagrangian, performing the matching with Eqs. (43)
and (44), and working consistently to NLO we find the nucleon masses are given by

mp = M0 �
�̂

(4⇡f⇡)
↵M

2
+

m

2
⇡

(4⇡f⇡)

⇣
↵M

2
+ �

r
M (⇤)

⌘
� 3⇡g

2
A

(4⇡f⇡)2
m

3
⇡ �

8g

2
�N

3(4⇡f⇡)2
F(m⇡,�,⇤)

+
â cos(!)�W

(4⇡f⇡)
+

3⇡�4
PQ(gA + g1)2

8m⇡(4⇡f⇡)2

mn = M0 +
�̂

(4⇡f⇡)
↵M

2
+

m

2
⇡

(4⇡f⇡)

⇣
↵M

2
+ �

r
M (⇤)

⌘
� 3⇡g

2
A

(4⇡f⇡)2
m

3
⇡ �

8g

2
�N

3(4⇡f⇡)2
F(m⇡,�,⇤)

+
â cos(!)�W

(4⇡f⇡)
+

3⇡�4
PQ(gA + g1)2

8m⇡(4⇡f⇡)2

with

F(m,�,⇤) = (�2 �m

2 + i✏)3/2 ln

 
� +

p
�2 �m

2 + i✏

��
p

�2 �m

2 + i✏

!
� 3

2
�m

2 ln
✓

m

2

⇤2

◆
��3 ln

✓
4�2

m

2

◆
. (45)

Here, we see that the NLO contributions exactly cancel in mn�mp, thus rendering the expansion of the mass splitting
on the same footing as the pion mass expansion. One can see the last term in these mass expressions is proportional
to the coupling of the nucleons to the singlet field, being proportional to (gA + g1). These terms are remnants of our
partially quenched theory and would vanish if the sea quarks had an isospin breaking mass term equal to that of the
valence quarks.

Similarly, one can determine the delta mass expressions. One should caution that due to the strong coupling to
the ⇡ �N system, the deltas, at lighter pion masses, have significantly larger volume dependence than the nucleons
or pions [62–64]. Neglecting these issues for this work, the delta mass extrapolation formulae are given by

m� = M0 + � +
�̂

(4⇡f⇡)
c� �M

6
+

m

2
⇡

(4⇡f⇡)

⇣
�M

2
+ �̄

r
M (⇤)

⌘
� 25g

2
��

27(4⇡f⇡)2
m

3
⇡ �

2g

2
�N

3(4⇡f)2
F(m⇡,��, µ)

+
â cos(!)�̄W

(4⇡f⇡)
+

5⇡�4
PQg

2
��

12m⇡(4⇡f⇡)2
, (46)

where the coe�cients c� are given in Table I and

F(m,��,⇤) =
⇢
�F(m,�,⇤) + 2i⇡(�2 �m

2)3/2
, m < |�|

�F(m,�,⇤) + 2⇡(m2 ��2)3/2
, m > |�| . (47)

In the limit �̂ ! 0, these expressions reduce to those in Ref. [25]. Similar to the nucleons, the NLO contributions
exactly cancel from the mass splittings, and the last term in this expression arises from the partially quenched
construction. Also, at this order, one sees the delta masses obey an equal spacing rule, which is violated at NNLO by
one operator [60]. It is precisely the imaginary piece of this F-function, which in finite Euclidean volume gives rise
to the power-law dependence of the delta masses [63, 64].
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(PQ)
W , (44)

for the discretization operators. Using the partially quenched Lagrangian, performing the matching with Eqs. (43)
and (44), and working consistently to NLO we find the nucleon masses are given by

mp = M0 �
�̂
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2
+

m

2
⇡
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+
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+
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PQ(gA + g1)2
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(4⇡f⇡)
↵M

2
+

m

2
⇡

(4⇡f⇡)

⇣
↵M

2
+ �

r
M (⇤)

⌘
� 3⇡g

2
A

(4⇡f⇡)2
m

3
⇡ �

8g

2
�N

3(4⇡f⇡)2
F(m⇡,�,⇤)

+
â cos(!)�W

(4⇡f⇡)
+

3⇡�4
PQ(gA + g1)2

8m⇡(4⇡f⇡)2

with

F(m,�,⇤) = (�2 �m

2 + i✏)3/2 ln
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p
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2 + i✏
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p

�2 �m

2 + i✏
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2
�m
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✓

m

2

⇤2

◆
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✓
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m

2
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Here, we see that the NLO contributions exactly cancel in mn�mp, thus rendering the expansion of the mass splitting
on the same footing as the pion mass expansion. One can see the last term in these mass expressions is proportional
to the coupling of the nucleons to the singlet field, being proportional to (gA + g1). These terms are remnants of our
partially quenched theory and would vanish if the sea quarks had an isospin breaking mass term equal to that of the
valence quarks.

Similarly, one can determine the delta mass expressions. One should caution that due to the strong coupling to
the ⇡ �N system, the deltas, at lighter pion masses, have significantly larger volume dependence than the nucleons
or pions [62–64]. Neglecting these issues for this work, the delta mass extrapolation formulae are given by

m� = M0 + � +
�̂

(4⇡f⇡)
c� �M

6
+

m

2
⇡

(4⇡f⇡)

⇣
�M

2
+ �̄

r
M (⇤)

⌘
� 25g

2
��

27(4⇡f⇡)2
m

3
⇡ �

2g

2
�N

3(4⇡f)2
F(m⇡,��, µ)

+
â cos(!)�̄W

(4⇡f⇡)
+

5⇡�4
PQg

2
��

12m⇡(4⇡f⇡)2
, (46)

where the coe�cients c� are given in Table I and

F(m,��,⇤) =
⇢
�F(m,�,⇤) + 2i⇡(�2 �m

2)3/2
, m < |�|

�F(m,�,⇤) + 2⇡(m2 ��2)3/2
, m > |�| . (47)

In the limit �̂ ! 0, these expressions reduce to those in Ref. [25]. Similar to the nucleons, the NLO contributions
exactly cancel from the mass splittings, and the last term in this expression arises from the partially quenched
construction. Also, at this order, one sees the delta masses obey an equal spacing rule, which is violated at NNLO by
one operator [60]. It is precisely the imaginary piece of this F-function, which in finite Euclidean volume gives rise
to the power-law dependence of the delta masses [63, 64].



Isospin Violation and Lattice QCD AWL  arXiv:0904.2404

mval = msea � �⌧3

Nucleon Masses

Mn �Mp = 2↵N�
B

4⇡f⇡
+O(�2, �m⇡)

Notice in the isospin splitting, not only the isospin violation appears as 
expected, but the non-analytic pion loop corrections exactly cancel, and the 
PQ effects exactly cancel!  (This is only with “symmetric isospin breaking”)

The expansion for Mn-Mp becomes similar to that of  the pions (only even 
powers of  the pion mass)

Mn =M0 +
2B�

4⇡f⇡

↵N

2
+

m2
⇡

4⇡f⇡

⇣↵N

2
+ �N (µ)

⌘
� 3⇡g2A

(4⇡f⇡)2
m3

⇡ � 8g2⇡N�

3(4⇡f⇡)2
F(m⇡,�, µ)

+
3⇡�4

PQ(gA + g1)2

8m⇡(4⇡f⇡)2

Mp =M0 �
2B�

4⇡f⇡

↵N

2
+

m2
⇡

4⇡f⇡

⇣↵N

2
+ �N (µ)

⌘
� 3⇡g2A

(4⇡f⇡)2
m3

⇡ � 8g2⇡N�

3(4⇡f⇡)2
F(m⇡,�, µ)

+
3⇡�4

PQ(gA + g1)2

8m⇡(4⇡f⇡)2
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MN = �0 + �1m�

= 938± 9 MeV

AWL  arXiv:0904.2404

mval = msea � �⌧3

m⇡ ' 174 MeV

m⇡ ' 758 MeV

“Ruler Plot”  (blame Brian Tiburzi)

Trying to fit nucleon mass results to baryon chiral perturbation theory, with gA 
as a free parameter, leads to gA~0.  Serious challenges to convergence of  SU(2) 
baryon chiral perturbation theory

(Lattice 2008, Chiral Dynamics 2012 AWL)

' 800 +m⇡
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NNLO operators (SU(2))

9

TABLE I: Coe�cients of the delta mass corrections arising from the LO term proportional to the strong isospin breaking and
the NNLO discretization e↵ect.

�++ �+ �0 ��

c� -3 -1 1 3

c̃� 1 -1/3 -1/3 1

1. NNLO

For the baryons, we can carry this prescription to NNLO (which is O(m2
q, mqa, a

2)). The complete set of partially
quenched operators relevant for the nucleon and delta masses at O(m2

q) was determined in Ref. [60]. The complete
set of new twisted mass heavy baryon �PT operators at O(mqa, a

2) was determined in Ref. [25]. The extension
of the twisted mass operators to the partially quenched theory is straightforward, however due to the cumbersome
length, we do not detail them here. Rather we present the results of the mass corrections after the matching to the
unquenched theory has been performed, and we only provide the expressions at maximal twist. For the nucleons,
there are 9 relevant operators in the partially quenched theory, which reduce to four in the unquenched theory, while
for the deltas there are 7 relevant operators in both,

LM =
1

(4⇡f)3

⇢
b

M
1 N̄M2

+N + b

M
5 N̄N tr(M2

+) + b

M
6 N̄M+N tr(M+) + b

M
8 N̄N [tr(M+)]2

+ t

M
1 T̄

kji
µ (M+M+)i

i0
Tµ,i0jk + t

M
2 T̄

kji
µ (M+)i

i0(M+)j
j0

Tµ,i0j0k + t

M
3 T̄µTµtr(M2

+)

+ t

M
4

�
T̄µM+Tµ

�
tr(M+) + t

M
5 T̄µTµ[tr(M+)]2

+ b

W�
1 N̄N tr(W�W�) + t

W�
1 (T̄µTµ) tr(W�W�) + t

W�
2 T̄

kji
µ (W�) i0

i (W�) j0

j Tµ,i0j0k

�
. (48)

As discussed in Refs. [4, 25], the symmetries of the twisted mass lattice action prevent the twisted mass term from
splitting the nucleon masses, which is reflected in the low energy chiral Lagrangian, while the delta-multiplet splits
into two degenerate pairs [25]. The corrections to the delta masses from the twisted mass discretization, at maximal
twist, are given by

�M� = � â

2
t

W�
2

4(4⇡f⇡)3
c̃� , (49)

where c̃� is given in Table I.
With our particular partially quenched construction, the nucleon and delta masses will have an error at this order

from one operator each, proportional to the terms with tr(M2
+). In the full theory with isospin breaking in both the

sea and valence sector, the masses would receive mass corrections

�mN =
b

M
5 (m4

⇡ + �̂

2)
2(4⇡f⇡)3

,

�m� =
t

M
3 (m4

⇡ + �̂

2)
2(4⇡f⇡)3

, (50)

while in our partially quenched theory, these mass corrections become

�mN !
b

M
5 (m4

⇡)
2(4⇡f⇡)3

,

�m� !
t

M
3 (m4

⇡)
2(4⇡f⇡)3

. (51)

However, in the mass splittings, these contributions vanish leaving the baryon mass splittings free of strong isospin
breaking errors at this order. At maximal twist, we then find the nucleon mass splittings is given through NNLO by

o

In QCD

�mN = bM5
m4

⇡ + (2B�)2

2(4⇡f⇡)3

In symmetric isospin breaking PQQCD

�mN = bM5
m4

⇡

2(4⇡f⇡)3

This is an error of  this partially quenched calculation, which must be removed 
from the LQCD calculation, to compare with experiment.   
But NOTE!  In Mn-Mp, this error exactly cancels (as we expect)

BCT & AWL  hep-lat/0501018
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AWL

lattice QCD calculation performed using the 
Spectrum Collaboration anisotropic clover-
Wilson gauge ensembles (developed @ JLAB)

ensemble atm⇡ atmK at� [Ncfg ⇥ Nsrc]

L T atml atms 0.0002 0.0004 0.0010 0.0020

16 128 -0.0830 -0.0743 0.0800 0.1033 207 ⇥ 16 207 ⇥ 16 207 ⇥ 16 207 ⇥ 16

16 128 -0.0840 -0.0743 – – 166 ⇥ 25 166 ⇥ 25 166 ⇥ 25 166 ⇥ 50

20 128 -0.0840 -0.0743 – – 120 ⇥ 25 – – –

24 128 -0.0840 -0.0743 – – 97 ⇥ 25 – 193 ⇥ 25 –

32 256 -0.0840 -0.0743 0.0689 0.0968 291 ⇥ 10 291 ⇥ 10 291 ⇥ 10 –

24 128 -0.0860 -0.0743 – – 118 ⇥ 26 – – –

32 256 -0.0860 -0.0743 0.0393 0.0833 842 ⇥ 11 – – –

ensemble m⇡ mK at� [Ncfg ⇥ Nsrc]

L T atml atms [MeV] [MeV] 0.0002 0.0004 0.0010 0.0020

16 128 -0.0830 -0.0743 500 647 207 ⇥ 16 207 ⇥ 16 207 ⇥ 16 207 ⇥ 16

16 128 -0.0840 -0.0743 426 608 166 ⇥ 25 166 ⇥ 25 166 ⇥ 25 166 ⇥ 50

20 128 -0.0840 -0.0743 426 608 120 ⇥ 25 – – –

24 128 -0.0840 -0.0743 426 608 97 ⇥ 25 – 193 ⇥ 25 –

32 256 -0.0840 -0.0743 426 608 291 ⇥ 10 291 ⇥ 10 291 ⇥ 10 –

24 128 -0.0860 -0.0743 244 520 118 ⇥ 26 – – –

32 256 -0.0860 -0.0743 244 520 842 ⇥ 11 – – –

I. INTRODUCTION

II. DETAILS OF THE LATTICE CALCULATION

The calculations presented in this work were performed on the Hadron Spectrum Col-
laboration (HSC) anisotropic clover-Wilson ensembles [1]. There have been a number of
important calculations performed on these ensembles... HSC, NPLQCD, EMC, ... The aim
of this work is to perform a detailed analysis of the scale setting, the quark mass renor-
malization and the light-quark mass dependence of the ground state hadron spectrum. The
HSC ensembles exist for a variety of light quark masses and volumes but just a single lattice
spacing with fixed renormalized anisotropy ⇠ = as/at = 3.5.

III. LIGHT-QUARK MASS DEPENDENCE AND SCALE SETTING

A. Pseudo-Nambu-Goldstone mesons, ⌦� and scale setting

We will use the omega mass to set the scale, since it is expected to have the simplest
light quark mass dependence of all the baryons. The strategy is to extrapolate atm⌦(l⌦, s⌦)
to the physical values of l⌦ and s⌦, where

l⌦ =
m2

⇡

m2
⌦

, s⌦ =
2m2

K � m2
⇡

m2
⌦

. (1)

We define the physical values by their isospin averaged values (after subtracting EM self-
energy corrections). The pions are split at O(�2) with the ⇡± having no � correction whereas

3
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Scale Setting:

atm
⇤
⌦ = atm⌦(l

⇤
⌦, s

⇤
⌦)

s⌦ =
2m2

K �m2
⇡

m2
⌦

l⌦ =
m2

⇡

m2
⌦

But recall the lattices generated were generated with fixed strange quark mass 
this makes it challenging to extrapolate in 

mh[MeV] =
atmh

atm⌦

atm⌦

atm⇤
⌦

mphy
⌦ = atmh

mphy
⌦

atm⇤
⌦

= atmh
1

a⇤t

m⌦(l⌦, s⌦) = m0 + c(1)l l⌦ + c(1)s s⌦ + · · ·

Compute these masses, then extrapolate
the scale is determined at the 
physical point

This is a “quark mass independent” scale setting scheme

s⌦

Also, input strange quark mass was about 10% too light

atm
sea
s = �0.0743 atm

val
s = {�0.0743,�0.0728,�0.0713}

lightest heaviest

a⇤t ⌘ atm⇤
⌦

mphy
⌦
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m⌦(l⌦, s⌦) = m0 + c(1)l l⌦ + c(1)s s⌦ + · · ·

Extrapolation and scale setting

but we also have the partially quenched results 
using SU(3) symmetry to motivate the formula:0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
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FIG. 2: The ⌦ mass versus l⌦ (left) and s⌦ (right).

TABLE II: Correlated extrapolation using Eq. (5).

PQ atm0 atc
(1)
l atc

(1)
s �2 dof Q atm

phys
⌦ at[fm] a�1

t [MeV]

no 0.146(13)(20) 0.49(6)(7) 0.73(7)(11) 6.70 6 0.35 0.2741(18)(22) 0.0322(2)(3) 6101(40)(49)

yes 0.108(14)(23) 0.48(6)(7) 0.73(7)(11) 6.94 6 0.33 0.2750(62)(78) 0.0324(7)(9) 6082(137)(173)

C� =

0

@
0.000157 �0.000178 �0.000872

�0.000178 0.003349 0.000427
�0.000872 0.000427 0.004981

1

A

C(PQ)
� =

0

@
0.000206 �0.000439 �0.000903

�0.000439 0.003271 0.000416
�0.000903 0.000416 0.004972

1

A (7)

We can use the physical ⌦ mass to then determine the scale at for these ensembles. The
resulting temporal lattice spacing is 10% smaller than the value quoted in the original aniso
paper [1]. We determine

1

a⇤
t

= 6101 ± 40 ± 49 MeV . (8)

1. Pion and Kaon extrapolations and the quark masses

Using the scale setting determined in the previous section, Eq. (8), we convert our pion
and kaon mass results to MeV in order to determine the input light- and strange-quark
masses needed to reproduce the physical values. The pion masses are in Table III and
plotted in Fig. 3. The third uncertainty is from the scale setting. We also plot the isospin
averaged kaon masses (

p
m2

K±/2 + m2
K0/2).

6

partial quenching has no discernible effect on scale or c(1)l,s

Scale Setting

m⌦(l⌦, s
sea
⌦ , sval⌦ ) = m0 + c̃(1)l

✓
l⌦ +

1

2
ssea⌦

◆
+ c̃(1)s sval⌦ + · · ·
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msea = lm0p0840 sm0p0743
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atmval
s
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m
K

[M
eV

]

msea = lm0p0860 sm0p0743
msea = lm0p0840 sm0p0743
msea = lm0p0830 sm0p0743

ensemble atm⇡ atmK at� [Ncfg ⇥ Nsrc]

L T atml atms 0.0002 0.0004 0.0010 0.0020

16 128 -0.0830 -0.0743 0.0800 0.1033 207 ⇥ 16 207 ⇥ 16 207 ⇥ 16 207 ⇥ 16

16 128 -0.0840 -0.0743 – – 166 ⇥ 25 166 ⇥ 25 166 ⇥ 25 166 ⇥ 50

20 128 -0.0840 -0.0743 – – 120 ⇥ 25 – – –

24 128 -0.0840 -0.0743 – – 97 ⇥ 25 – 193 ⇥ 25 –

32 256 -0.0840 -0.0743 0.0689 0.0968 291 ⇥ 10 291 ⇥ 10 291 ⇥ 10 –

24 128 -0.0860 -0.0743 – – 118 ⇥ 26 – – –

32 256 -0.0860 -0.0743 0.0393 0.0833 842 ⇥ 11 – – –

ensemble m⇡ mK at� [Ncfg ⇥ Nsrc]

L T atml atms [MeV] [MeV] 0.0002 0.0004 0.0010 0.0020

16 128 -0.0830 -0.0743 488 620 207 ⇥ 16 207 ⇥ 16 207 ⇥ 16 207 ⇥ 16

16 128 -0.0840 -0.0743 420 591 166 ⇥ 25 166 ⇥ 25 166 ⇥ 25 166 ⇥ 50

20 128 -0.0840 -0.0743 420 591 120 ⇥ 25 – – –

24 128 -0.0840 -0.0743 420 591 97 ⇥ 25 – 193 ⇥ 25 –

32 256 -0.0840 -0.0743 420 591 291 ⇥ 10 291 ⇥ 10 291 ⇥ 10 –

24 128 -0.0860 -0.0743 240 508 118 ⇥ 26 – – –

32 256 -0.0860 -0.0743 240 508 842 ⇥ 11 – – –

I. INTRODUCTION

II. DETAILS OF THE LATTICE CALCULATION

The calculations presented in this work were performed on the Hadron Spectrum Col-
laboration (HSC) anisotropic clover-Wilson ensembles [1]. There have been a number of
important calculations performed on these ensembles... HSC, NPLQCD, EMC, ... The aim
of this work is to perform a detailed analysis of the scale setting, the quark mass renor-
malization and the light-quark mass dependence of the ground state hadron spectrum. The
HSC ensembles exist for a variety of light quark masses and volumes but just a single lattice
spacing with fixed renormalized anisotropy ⇠ = as/at = 3.5.

III. LIGHT-QUARK MASS DEPENDENCE AND SCALE SETTING

A. Pseudo-Nambu-Goldstone mesons, ⌦� and scale setting

We will use the omega mass to set the scale, since it is expected to have the simplest
light quark mass dependence of all the baryons. The strategy is to extrapolate atm⌦(l⌦, s⌦)
to the physical values of l⌦ and s⌦, where

l⌦ =
m2

⇡

m2
⌦

, s⌦ =
2m2

K � m2
⇡

m2
⌦

. (1)

We define the physical values by their isospin averaged values (after subtracting EM self-
energy corrections). The pions are split at O(�2) with the ⇡± having no � correction whereas

3

�latt[MeV] =

8
>><

>>:

1.22
2.44
6.10
12.2

not renormalized
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If  this story is true, we should be able to predict the behavior of  
the Ξ isospin splitting.  The Ξ is also an iso-doublet, so the chiral 
Lagrangian will be identical in form, with only the LECs being 
different.
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Now for something really crazy: combine SU(3) and large-Nc 
expansions
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which has the limits and properties

F(0,�, µ) = 0

F(m, 0, µ) = ⇤m3

F(m,��, µ) =

⇤
�F(m,�, µ) + 2i⇤(�2 �m2)3/2, m < |�|
�F(m,�, µ) + 2⇤(m2 ��2)3/2, m > |�| . (16)

For the baryon spectrum, the leading non-analytic light quark mass dependence is encoded
in this function. As such, it is of particular interest to find evidence of this behavior in the
spectrum.

The mass relations R3 and R4 vanish in both the SU(3) chiral and vector limits, making
them more sensitive to the NLO non-analytic light quark mass dependence. At NLO in the
chiral expansion, and to the first two non-trivial orders in the large Nc expansion, these
relations are given by

R3(ml,ms) =
20

39
b1 (ms �ml)�

20a21 � 5a22
117

3F0
⇥ � 2F0

K � F0
�

(4⇤f)2

� a21
117

�
35

3F�
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K � F�
�

(4⇤f)2
�

3F��
⇥ � 2F��

K � F��
�

(4⇤f)2

⇥
, (17)

R4(ml,ms) =� 5

18
b2 (ms �ml)

+
a21 + 4a1a2 + a22

36

3F0
⇥ � 2F0

K � F0
�

(4⇤f)2
� 2a21

9

3F�
⇥ � 2F�

K � F�
�

(4⇤f)2
. (18)

In addition to these three mass relations, the Gell-Mann–Okubo relation is also important
to examine

�GMO =
3

4
M⇥ +

1

4
M⌅ � 1

2
MN � 1

2
M⇤ . (19)

Since the quark mass operator contains pieces which transform as both an 8 as well as a 1
under SU(3) transformations, Eq. (9), there are non-vanishing contributions to the GMO
relation. However, mass operators which transform as an 8 make vanishing contributions
to Eq. (19). The leading mass operator which makes a non-zero contribution to the GMO
relation transforms as a flavor-27. These corrections can arise either from chiral loops
or from a mass operator containing two or more quark mass insertions. This makes the
GMO relation particularly interesting to explore with lattice QCD calculations; the leading
contribution to this mass relation comes from chiral loop e⇥ects which are non-analytic in
the light quark masses. Experimentally, the GMO relation is found to be

�phy
GMO = 6.45 MeV . (20)

Each baryon mass in the relation receives non-analytic mass corrections which scale as
�MB ⇥ Ncm

3/2
s . These large corrections may lead to the expectation that the GMO rela-

tion receives large contributions from the loop corrections. However, one can show these
Ncm

3/2
s terms are proportional to 1 under SU(3) transformations. Additionally, the m3/2

s

contributions transform as an 8 while the m3/2
s /Nc corrections transform as a flavor-27. This

8

R3 / ms �ml R4 / (ms �ml)/Nc

bD =
1

4
b2

bF =
1

2
b1 +

1

6
b2
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Now for something really crazy: combine SU(3) and large-Nc 
expansions
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FIG. 2: Representative fits to R1 from LO (left) and NLO (right) HB�PT analysis. The blue star
is the physical value, not used in the analysis. The upper error band results from a fit to the lightest
four numerical data and the lower bad is the result extrapolated to the physical value of the strange
quark mass mlatt

s ⇥ mlatt
s,phy, Eq. (27).

However, this is not surprising given the small value of a1 determined in the NLO analysis.
This small value is consistent with no contributions from the NLO terms and inconsistent
with the known phenomenological determination of the axial coupling. This is not surprising
given the convergence issues observed in the SU(2) extrapolation of the nucleon mass [12, 16].
One is left to conclude that the SU(3) heavy baryon ⇥PT does not provide a controlled,
convergent expansion for the mass combination R1 for the range of quark masses used in
this work and a value of a1 consistent with phenomenology or direct lattice calculations of
the baryon axial charges.

2. Mass relations R3 and R4

The relations R3 and R4 both receive leading contributions from flavor-octet mass op-
erators, vanishing in both the SU(3) vector as well as SU(3) chiral limits. From these
symmetries, the relations R3 and R4 are more sensitive to the non-analytic light quark mass
dependence occurring at NLO in the chiral expansion. As with the analysis of R1, three
choices of the parameter f are taken to estimate higher order e�ects, Eq. (28). The LO
expressions for R3 and R4, Eqs. (17) and (18) with ai = 0, do not describe the numerical
results well; it is clear higher order contributions are necessary for extrapolations of this
data. At NLO, the analysis of R3 and R4 becomes correlated. The full covariance matrix is
constructed as described in Ref. [37]. The numerical results of Ref. [12] are insu⇤cient to
constrain both the leading and subleading axial coe⇤cients, and so the analysis is restricted
to the set of LECs

� = (b1, b2, a1) , (33)

with a2 = 0. From the NLO analysis, the LECs are determined to be

b1[NLO] = �6.6(5) , b2[NLO] = 4.3(4) , a1[NLO] = 1.4(1) . (34)
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FIG. 3: The LO and NLO contributions to R3 (left) and R4 (right). A (blue) star is used to denote
the physical values, not included in the analysis. The particular fit displayed is a combined analysis
of R3 and R4 to the data at the lightest three values of mlatt

l .

Using the leading large Nc relations with a2 = 0 in Eq. (11), this corresponds to

D = 0.70(5) , F = 0.47(3) , C = �1.4(1) , H = �2.1(2) . (35)

The significance of this is prominent; the large value of the axial coupling is strong evidence
for the presence of the non-analytic light quark mass dependence in these mass relations.
Further, this is the first time an analysis of the baryon spectrum has returned values of the
axial couplings consistent with phenomenology.7

However, caution is in order. Examining the resulting contributions to R3 and R4 from LO
and NLO separately, one observes a delicate cancellation between the di�erent contributions,
see Fig. 3. Further studies are needed with more numerical data su⌅cient to also constrain
the parameter a2 as well as the NNLO contributions.

C. Gell-Mann–Okubo Relation

The leading contribution to the Gell-Mann–Okubo relation is from a flavor-27, which
in HB�PT come from the leading non-analytic light quark mass dependence, Eq. (21).
For this reason, it is a particularly interesting mass relation to study, as has been done if
Refs. [12, 62]. In this work, the analysis is taken further. First, it is demonstrated that
the numerical results are inconsistent with a taylor expansion about the SU(3) vector limit.
Second, an NNLO analysis is performed for the first time and it is demonstrated at this

7 Finding values of the axial couplings consistent with phenomenology has not just been a challenge for

lattice QCD, but also observed in large Nc �PT analysis of the experimentally measured baryon magnetic

moments [97, 98]. It is also interesting to note that while the SU(3) chiral expansion for the baryon

spectrum is not convergent, it was found that the volume dependence of the octet baryon masses is

consistent with SU(3) HB�PT. Analysis of the volume dependence yielded a large value of g�N� (C)

with gA fixed to its physical value [99].
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๏ QCD Theta term

Computational Strategy

LCPV = � g2s ✓̄

32⇡2
G̃µ⌫G

µ⌫ L�
CPV = � ḡ0

2F⇡
N̄~⇡ · ~⌧N

ḡ0 =
�Mmd�mu

n�p

md �mu

2mdmu

md +mu
✓̄Symmetries

�Mmd�mu
n�p = ↵(md �mu)

Simple spectroscopic calculation allows us to determine this 
long-range CP-Violating pion-nucleon coupling

This strategy was developed in conversations with Emanuele 
Mereghetti while we were both at LBNL



๏ Quark Chromo-EDM Operators

Computational Strategy
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Computational Strategy
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๏ Quark Chromo-EDM Operators

Computational Strategy
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interactions arising from these sources of CP violation. The leading order chiral Lagrangian
for CP violation is [8]

L�
CP = � ḡ0

2F⇡
N̄⌧i⇡iN � ḡ1

2F⇡
N̄⇡3N , (2)

where ḡ0 and ḡ1 are the long-range CP-violating pion-nucleon couplings. For a QCD ✓̄-term,
ḡ1 is suppressed in the chiral expansion compared to ḡ0, but this does not hold for more
general BSM CP violation.

Focussing on the dimension-6 quark-bilinear operators, there are two quark EDM opera-
tors and two quark C-EDM operators, along with their CP conserving partners [8],

L6
q̄q =� i

2
q̄�µ⌫�5(d0 + d3⌧3)qFµ⌫ � i

2
q̄�µ⌫�5(d̃0 + d̃3⌧3)Gµ⌫q

� 1

2
q̄�µ⌫ (c3⌧3 + c0)qFµ⌫ � 1

2
q̄�µ⌫ (c̃3⌧3 + c̃0)Gµ⌫q, (3)

where Fµ⌫ , Gµ⌫ are the QED and QCD field-strength tensors.1 Just as with the QCD ✓̄-term,
this symmetry can be exploited to perform simple spectroscopic lattice QCD calculations
of the nucleon mass and mass splitting in the background of the CP conserving opera-
tors. For example, one can perturbatively add the operator q̄�µ⌫⌧3qGµ⌫ to the action (after
transforming to Euclidean space-time, of course) and compute the induced change in the
proton-neutron mass splitting. This will, in turn, provide a contribution to the long-range
pion-nucleon CP-violating coupling.

In terms of gluonic operators, the two long-range couplings in Eq. (2) are given by [8]

ḡ0 = �qMN
d̃0
c̃3

+ �MN
�qm2

⇡

m2
⇡

d̃3
c̃0

,

ḡ1 = �2�⇡N

✓
�qMN

�⇡N
� �qm2

⇡

m2
⇡

◆
d̃3
c̃0

. (4)

In these expressions

�MN = nucleon mass splitting induced by O = � q̄ ⌧3 q ,

�⇡N = nucleon sigma-term induced by O = �m̄q̄q ,

�qMN = nucleon mass splitting induced by O = �(c̃3/2) q̄�
µ⌫⌧3Gµ⌫q ,

�qMN = nucleon sigma-term induced by O = �(c̃0/2) q̄�
µ⌫Gµ⌫q ,

�qm
2
⇡ = pion sigma-term induced by O = �(c̃0/2) q̄�

µ⌫Gµ⌫q , (5)

where 2� = md�mu and 2m̄ = md+mu. One can compute simple spectroscopic properties of
the nucleon and, by exploiting the symmetry relation between these quark bilinear operators,
determine the CP-violating pion-nucleon couplings in terms of the fundamental dimension-6
quark operators.

This provides a unique opportunity to use lattice QCD and EFT to contribute signifi-
cantly to the search for BSM physics, specifically, the search for new sources of CP violation,
which we expect on general grounds. Indeed, this project addresses one of the areas high-
lighted in the USQCD white paper on “Lattice QCD for Cold Nuclear Physics” [9].

1 Note that these operators are dimension-6 because the coe�cients are proportional to the fermion masses.

This pattern of chiral symmetry breaking is expected, otherwise the BSM physics would generate additive

quark mass renormalization.

Again, all that is needed are simple spectroscopic quantities
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You may recognize these operators...



๏ Quark Chromo-EDM Operators

Computational Strategy
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You may recognize these operators...
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The quantities of  interest can be determined by making use of  
the Feynman-Hellman Theorem and simple spectroscopic 
LQCD calculations



๏ Quark Chromo-EDM Operators

Computational Strategy

O0 = �1

2
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You may recognize these operators...

�qMN = c̃3
@MN [c̃cO3]

@c̃3
�qMN = c̃0

@MN [c̃0O0]

@c̃0

The quantities of  interest can be determined by making use of  
the Feynman-Hellman Theorem and simple spectroscopic 
LQCD calculations

We also need to determine

�⇡N = ml
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๏ Quark Chromo-EDM Operators

Computational Strategy

O0 = �1

2
q̄�µ⌫G

µ⌫q O3 = �1

2
q̄⌧3�µ⌫G

µ⌫q

Simple spectroscopic LQCD calculations can be used to 
determine these important long-range CP-Violating pion-
nucleon couplings

Spectroscopic calculations are what we are best at



๏ Quark Chromo-EDM Operators

Computational Strategy

O0 = �1

2
q̄�µ⌫G

µ⌫q O3 = �1

2
q̄⌧3�µ⌫G

µ⌫q

The leading contribution will come from the valence quarks 
(experience with valence/sea quark mass contribution to 
nucleon mass) - begin with this contribution

D� = D + �{O0,O3}
๏ Invert the valence quarks with a modified Dirac operator

๏ Construct nucleon correlation function with these quarks and 
determine the resulting nucleon mass

๏ Vary λ and determine slope of  mass correction to get derivative

�qMN = c̃3
@MN [c̃cO3]

@c̃3
�qMN = c̃0

@MN [c̃0O0]

@c̃0



๏ Our choice of  action for these calculations is

Choice of  Action

Domain-Wall Valence fermions on dynamical HISQ ensembles

There are several reasons for this choice 
!
it is not my fond familiarity with Mixed-Action calculations :)



๏ Our choice of  action for these calculations is 
!
!
๏ control of  chiral symmetry is important - renormalization 

!
๏ calculations at/near physical pion mass 

!
๏ multiple volumes to perform volume study 

!
๏ multiple lattice spacings for continuum limit 

!
๏ publicly available configurations

Choice of  Action

Domain-Wall Valence fermions on dynamical HISQ ensembles



๏ The only choice of  dynamical configurations which satisfy these 
criteria are the dynamical HISQ ensembles from MILC with 
2+1+1 dynamical flavors

Choice of  Action

7

TABLE I: Cost estimates for the domain-wall on HISQ inversions and contractions. These cost
estimates are based upon the PIs’ experience with domain-wall on asqtad calculations. The previous
calculations utilized an older domain-wall inverter. The planned calculations will use the latest
Mobius inverter, reducing the cost by roughly a factor of two. Additionally, we will implement the
eigCG algorithm to improve the performance, and the AMA to increase the statistics. The number
of sources listed here represent the number of “full solutions” required in the AMA method. The
amount of statistics needed is estimated through the PIs’ experience and the need for few percent
uncertainties on the extracted ground state nucleon masses. The Nsrc counting includes the ±�
values of the two quark bilinear operators we will implement.

a ml/ms V m⇡L m⇡ J/Psi core hours Nsrc ⇥Ncfg J/Psi core Storage

[fm] [MeV] per source hours [106] TB

0.15 1/5 163 ⇥ 48 3.78 306 12 8⇥ 1000 .10 –

0.15 1/10 243 ⇥ 48 3.99 217 75 8⇥ 1000 .60 –

0.15 1/27 323 ⇥ 48 3.30 135 434 8⇥ 1000 3.5 27

0.12 1/5 243 ⇥ 64 4.54 309 54 8⇥ 1000 .43 –

0.12 1/10 243 ⇥ 64 3.22 221 97 8⇥ 1000 .77 –

0.12 1/10 323 ⇥ 64 4.29 221 229 8⇥ 1000 1.8 –

0.12 1/10 403 ⇥ 64 5.36 221 447 8⇥ 1000 3.6 70

0.12 1/27 483 ⇥ 64 3.88 135 1951 8⇥ 1000 15.6 121

0.09 1/5 323 ⇥ 96 4.50 314 186 8⇥ 1000 1.5 –

0.09 1/10 483 ⇥ 96 4.71 221 1158 8⇥ 1000 9.3 181

0.09 1/27 643 ⇥ 96 3.66 130 7480 0⇥ 1000 0

37.1 400

TABLE II: Cost estimates for the domain-wall on HISQ inversions and contractions proposed for
zero-priority time on the BG/Q at ALCF. Cost estimates are the same as Table I with the extra
conversion of 1.64 to BG/Q hours.

a ml/ms V m⇡L m⇡ J/Psi core hours Nsrc ⇥Ncfg BG/Q core Storage

[fm] [MeV] per source hours [106] TB

0.09 1/27 643 ⇥ 96 3.66 130 7480 8⇥ 1000 36 181

D. Zero priority time on the BG/Q at ALCF

One of the PIs (Winter) has been working to implement e�cient QDP++ and Chroma
code for the BG/Q. We anticipate this will be available soon and request a zero priority
allocation on the ALCF. This zero-priority time will be used to accumulate statistics pri-
marily on the a ⇠ 0.09 fm physical pion mass ensemble (listed as Nsrc = 0 in Table I). We
list in Table II the estimated cost to compute similar statistics on these ensembles. Based
upon prior-year zero priority time, we request an allocation of 7% of the zero priority time
this year.



๏ To control the chiral symmetry and greatly simplify the 
operator renormalization, Domain-Wall valence fermions are 
very suitable choice

Choice of  Action



๏ To control the chiral symmetry and greatly simplify the 
operator renormalization, Domain-Wall valence fermions are 
very suitable choice

Choice of  Action

O0 = �1

2
q̄�µ⌫G

µ⌫q

๏ Consider the contribution from the “clover operator” 
!

!
๏ one may first think clover-Wilson fermions are perfect, as a 

simple re-tuning of  the clover-coefficient is all that is needed 
๏ changing the clover-coefficient will change the nucleon mass 

with an additive mix of  both the physical shift of  interest and 
a discretization correction to the quark mass 

๏ disentangling the physical shift to the nucleon mass from this 
operator would involve a complicated tuning problem 
involving non-perturbative renormalization for each choice of  
clover-coefficient to subtract unphysical discretization effects



๏ To control the chiral symmetry and greatly simplify the 
operator renormalization, Domain-Wall valence fermions are 
very suitable choice

Choice of  Action

๏ There are other simplifications which occur with DWF 
involving both the chiral symmetry properties and 
renormalization



๏ By exploiting symmetries, we can study the modification of  the 
nucleon spectrum in the presence of  CP conserving operators 
which will then determine the values of  the CP-violating 𝜋-N 
couplings which arise from the quark chromo-EDM operators 

๏ The long-range CPV pion-nucleon couplings could allow for a 
direct connection with fundamental coefficients in dimension-6 
quark operators and real nuclear physics, 225Ra 

๏ We hope to have initial results this year 

Outlook

Chris Bouchard, Chris Monahan, Emanuele Mereghetti,  
Kostas Orginos, AWL, …
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Thank You!

Chris Bouchard, Chris Monahan, Emanuele Mereghetti,  
Kostas Orginos, AWL, …


