CP-Violating pion-nucleon couplings from quark Chromo-EDMs

Hadronic Matrix Elements for Probes of CP Violation

$$
\text { 22-24 January, } 2015
$$

André Walker-Loud

Fundamental Symmetries and Low-Energy Nuclear Physics

- The Universe is matter dominated at roughly 1 ppb :

$$
\eta \equiv \frac{X_{p+n}}{X_{\gamma}}=6.19(15) \times 10^{-10}
$$

- Sources of CP-violation beyond the Standard Model (SM) are needed to generate this observed asymmetry
- Assuming nature is CPT symmetric, this implies T-violation which implies fermions will have permanent electric dipole moments (EDMs)
- This has motivated significant experimental efforts to search (or plan to search) for permanent EDMs in a variety of systems e, n, p, deuteron, triton, ${ }^{3} \mathrm{He}, \ldots,{ }^{199} \mathrm{Hg},{ }^{225} \mathrm{Ra},{ }^{229} \mathrm{~Pa}, \ldots$

Fundamental Symmetries and Low-Energy Nuclear Physics

- In order to interpret a measurement/constraint of an EDM in a nucleon or nuclei as a value/bound of couplings to BSM physics, we must have a solution to QCD in the IR
- Our tools of choice are lattice QCD (LQCD) and Effective Field Theory (EFT)
- We desire to compute completely a nucleon EDM resulting from CP violating operators, however, yesterday, we heard a bit about how challenging this problem is
- In the meantime, we can exploit symmetries (tricks) to determine the long-range CP-violating π - N couplings from simple spectroscopic LQCD calculations which are expected to dominate the EDMs of certain nuclei (eg ${ }^{225} \mathrm{Ra}$)

Fundamental Symmetries and Low-Energy Nuclear Physics

- In a large nucleus, the long-range pion exchange will dominate the nuclear EDM
$\mathcal{L}_{C P V}=-\frac{\bar{g}_{0}}{2 F_{\pi}} \bar{N} \vec{\pi} \cdot \vec{\tau} N-\frac{\bar{g}_{1}}{2 F_{\pi}} \bar{N} \pi_{3} N-\frac{\bar{g}_{2}}{2 F_{\pi}} \pi_{3} \bar{N}\left(\tau_{3}-\frac{\pi_{3}}{F_{\pi}} \vec{\pi} \cdot \vec{\tau}\right) N$
- For the QCD theta term

$$
\left\{\bar{g}_{1}, \bar{g}_{2}\right\} \sim \bar{g}_{0} \frac{m_{\pi}^{2}}{\Lambda_{\chi}^{2}}
$$

- For more generic CP Violating operators

$$
\bar{g}_{2} \sim\left\{\bar{g}_{0}, \bar{g}_{1}\right\} \frac{m_{\pi}^{2}}{\Lambda_{\chi}^{2}} \quad \bar{g}_{1} \sim \bar{g}_{0}
$$

Fundamental Symmetries and Low-Energy Nuclear Physics

- The nuclear EDM is proportional to the Schiff moment

$$
\begin{aligned}
S & =\sum_{i \neq 0} \frac{\left\langle\Phi_{0}\right| S_{z}\left|\Phi_{i}\right\rangle\left\langle\Phi_{i}\right| H_{C P V}\left|\Phi_{0}\right\rangle}{E_{0}-E_{i}}+c . c . \\
S & =\frac{2 M_{N} g_{A}}{F_{\pi}}\left(a_{0} \bar{g}_{0}+a_{1} \bar{g}_{1}+a_{2} \bar{g}_{2}\right)
\end{aligned}
$$

- The Schiff parameters $\left\{a_{0}, a_{1}, a_{2}\right\}$ are computed with nuclear models under the assumption the CPV operator does not significantly distort the nuclear wave-function
- For a QCD theta term only $\bar{g}_{1} \sim \bar{g}_{2} \sim 0$ and thus a constraint on $\bar{\theta}$ can be made through the relation

$$
\bar{g}_{0}=\frac{\delta M_{n-p}^{m_{d}-m_{u}}}{m_{d}-m_{u}} \frac{2 m_{d} m_{u}}{m_{d}+m_{u}} \bar{\theta}=\alpha \frac{2 m_{d} m_{u}}{m_{d}+m_{u}} \bar{\theta}
$$

Fundamental Symmetries and Low-Energy Nuclear Physics

- The nuclear EDM is proportional to the Schiff moment

$$
\begin{aligned}
S & =\sum_{i \neq 0} \frac{\left\langle\Phi_{0}\right| S_{z}\left|\Phi_{i}\right\rangle\left\langle\Phi_{i}\right| H_{C P V}\left|\Phi_{0}\right\rangle}{E_{0}-E_{i}}+c . c . \\
S & =\frac{2 M_{N} g_{A}}{F_{\pi}}\left(a_{0} \bar{g}_{0}+a_{1} \bar{g}_{1}+a_{2} \bar{g}_{2}\right)
\end{aligned}
$$

- ${ }^{225} \mathrm{Ra}$ is interesting nucleus as it is octupole deformed
- "stiff" core making nuclear model calculations more reliable
- nearly degenerate parity partner state

$$
E_{1 / 2}^{-}-E_{1 / 2}^{+}=55 \mathrm{KeV}
$$

- $10^{2}-10^{3}$ enhancement of $\left\{a_{0}, a_{1}, a_{2}\right\}$

Fundamental Symmetries and Low-Energy Nuclear Physics

- Sources of CP-Violation in quark sector:

Operator $\bar{\theta}$
quark EDM
quark Chromo-EDM
Weinberg (GGG)
4-quark
4-quark induced

$\begin{array}{ll}\text { [Operator] } & \text { N } \\ 4 & 1\end{array}$
 6
 2

6
2
6
1
6
2
6
1

Fundamental Symmetries and Low-Energy Nuclear Physics

© Sources of CP-Violation in quark sector:
Operator [Operator] No. Operators$\bar{\theta}$
quark EDM 6 2
quark Chromo-EDM 6 2
Weinberg (GGG) 6 1
4-quark 6 24-quark induced61

Fundamental Symmetries and Low-Energy Nuclear Physics

- Sources of CP-Violation in quark sector:
Operator quark Chromo-EDM
$[\mathrm{O}$
4
6
No. Operators 1
$\mathcal{L}_{C P V}=-\frac{g_{s}^{2} \bar{\theta}}{32 \pi^{2}} \tilde{G}_{\mu \nu} G^{\mu \nu}-\frac{i}{2} \bar{q} \sigma^{\mu \nu} \gamma_{5}\left(\tilde{d}_{0}+\tilde{d}_{3} \tau_{3}\right) G_{\mu \nu} q$

$$
\mathcal{L}_{C P V}=-\frac{\bar{g}_{0}}{2 F_{\pi}} \bar{N} \vec{\pi} \cdot \vec{\tau} N-\frac{\bar{g}_{1}}{2 F_{\pi}} \bar{N} \pi_{3} N-\frac{\bar{g}_{2}}{2 F_{\pi}} \pi_{3} \bar{N}\left(\tau_{3}-\frac{\pi_{3}}{F_{\pi}} \vec{\pi} \cdot \vec{\tau}\right) N
$$

QCD Isospin Violation and CP-violating $\pi-\mathcal{N}$

A precise determination of the strong isospin breaking contribution to $\mathrm{Mn}-\mathrm{Mp}$ teaches us about CP-violation

$$
\bar{g}_{0}=\frac{\delta M_{n-p}^{m_{d}-m_{u}}}{m_{d}-m_{u}} \frac{2 m_{d} m_{u}}{m_{d}+m_{u}} \bar{\theta}=\alpha \frac{2 m_{d} m_{u}}{m_{d}+m_{u}} \bar{\theta}
$$

Isospin Violation and Lattice QCD

$$
\delta M_{n-p}^{m_{d}-m_{u}}=2.44(17) \mathrm{MeV}
$$

			$2.52(29)$
BMWc [1406.4088]			

Isospin Violation and Lattice QCD

strong isospin breaking correction

$$
\delta M_{n-p}^{m_{d}-m_{u}}=\alpha\left(m_{d}-m_{u}\right)
$$

ideal problem for lattice QCD

$$
\delta M_{n-p}^{m_{d}-m_{u}}=2.44(17) \mathrm{MeV}
$$

lattice average
B.Tiburzi,AWL Nucl. Phys. A764 (2006) Beane, Orginos, Savage Nucl. Phys. B768 (2007) AWL arXiv:0904.2404 Blum, Izubuchi, etal Phys. Rev. D82 (2010)

AWL PoS Lattice2010 (2010)
de Divitiis etal JHEP 1204 (2012) Horsley etal Phys. Rev. D86 (2012)
de Divitiis etal Phys. Rev.D87 (2013)
Borsanyi etal arXiv:1306.2287
Borsanyi etal arXiv:1406.4088

But in (most) lattice calculations $m_{u}=m_{d}=m_{l}$? (except latest)

Isospin Violation and Lattice QCD

strong isospin breaking correction

$$
\delta M_{n-p}^{m_{d}-m_{u}}=\alpha\left(m_{d}-m_{u}\right)
$$

ideal problem for lattice QCD

$$
\delta M_{n-p}^{m_{d}-m_{u}}=2.44(17) \mathrm{MeV}
$$

lattice average

B.Tiburzi,AWL Nucl. Phys. A764 (2006) Beane, Orginos, Savage Nucl. Phys. B768 (2007) AWL arXiv:0904.2404 Blum, Izubuchi, etal Phys. Rev. D82 (2010) AWL PoS Lattice2010 (2010) de Divitiis etal JHEP 1204 (2012) Horsley etal Phys. Rev. D86 (2012) de Divitiis etal Phys. Rev. D87 (2013) Borsanyi etal arXiv:I306.2287 Borsanyi etal arXiv:I406.4088

$$
m_{u, d}^{\text {valence }} \neq m_{l}^{\text {sea }}
$$

"partially quenched" lattice QCD trick that works on the computer but introduces error which must be corrected

Isospin Violation and Lattice QCD

strong isospin breaking correction

$$
\delta M_{n-p}^{m_{d}-m_{u}}=\alpha\left(m_{d}-m_{u}\right)
$$

ideal problem for lattice QCD

$$
\delta M_{n-p}^{m_{d}-m_{u}}=2.44(17) \mathrm{MeV}
$$

lattice average

Beane, Orginos, Savage Nucl. Phys. B768 (2007)

AVL arXiv:0904.2404 Blum, Izubuchi, etal Phys. Rev. D82 (2010)

AWL PoS Lattice2010 (2010)
de Divitiis etal JHEP 1204 (2012) Horsley etal Phys. Rev. D86 (2012)
de Divitiis etal Phys. Rev. D87 (2013)
Borsanyi etal arXiv:1306.2287
Borsanyi etal arXiv:1406.4088
can we improve this method? of course!
"Symmetric breaking of isospin symmetry" AWL arXiv:0904.2404

Isospin Violation and Lattice QCD

> "Symmetric breaking of isospin symmetry"
> $m_{u, d}^{\text {sea }}=m_{l}, \quad m_{u}^{\text {valence }}=m_{l}-\delta, \quad m_{d}^{\text {valence }}=m_{l}+\delta$
> $\mathcal{Z}_{u, d}=\int D U_{\mu} \operatorname{Det}\left(D+m_{l}-\delta \tau_{3}\right) e^{-S\left[U_{\mu}\right]}$
> $=\int D U_{\mu} \operatorname{Det}\left(D+m_{l}\right) \operatorname{det}\left(1-\frac{\delta^{2}}{\left(D+m_{l}\right)^{2}}\right) e^{-S\left[U_{\mu}\right]}$

Isospin Violation and Lattice QCD

$$
\begin{gathered}
\text { "Symmetric breaking of isospin symmetry" } \\
m_{u, d}^{\text {sea }}=m_{l}, \quad m_{u}^{\text {valence }}=m_{l}-\delta, \quad m_{d}^{\text {valence }}=m_{l}+\delta \\
\mathcal{Z}_{u, d}=\int D U_{\mu} \operatorname{Det}\left(D+m_{l}-\delta \tau_{3}\right) e^{-S\left[U_{\mu}\right]} \\
=\int D U_{\mu} \operatorname{Det}\left(D+m_{l}\right) \operatorname{det}\left(1-\frac{\delta^{2}}{\left(D+m_{l}\right)^{2}}\right) e^{-S\left[U_{\mu}\right]}
\end{gathered}
$$

Isospin symmetric quantities: error $\mathcal{O}\left(\delta^{2}\right)$ Isospin violating quantities: error $\mathcal{O}\left(\delta^{3}\right)$

Isospin Violation and Lattice QCD

AWL arXiv:0904.2404

Partially Quenched Pion Lagrangian

$$
\begin{aligned}
\mathcal{L}^{(4 \mid 2)}= & \frac{f^{2}}{8} \operatorname{str}\left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right)+\frac{2 \mathrm{Bf}^{2}}{8} \operatorname{str}\left(\mathrm{~m}_{\mathrm{Q}}^{\dagger} \Sigma+\Sigma^{\dagger} \mathrm{m}_{\mathrm{Q}}\right) \\
& +L_{1}^{(P Q)}\left[\operatorname{str}\left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right)\right]^{2}+\mathrm{L}_{2}^{(\mathrm{PQ})} \operatorname{str}\left(\partial_{\mu} \Sigma \partial_{\nu} \Sigma^{\dagger}\right) \operatorname{str}\left(\partial^{\mu} \Sigma \partial^{\nu} \Sigma^{\dagger}\right)+\mathrm{L}_{3}^{(\mathrm{PQ})} \operatorname{str}\left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger} \partial_{\nu} \Sigma \partial^{\nu} \Sigma^{\dagger}\right) \\
& +L_{4}^{(P Q)} \operatorname{str}\left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right) \operatorname{str}\left(2 \mathrm{Bm}_{\mathrm{Q}}^{\dagger} \Sigma+\Sigma^{\dagger} 2 \mathrm{Bm}_{\mathrm{Q}}\right)+\mathrm{L}_{5}^{(\mathrm{PQ})} \operatorname{str}\left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\left(2 \mathrm{Bm}_{\mathrm{Q}}^{\dagger} \Sigma+\Sigma^{\dagger} 2 \mathrm{Bm}_{\mathrm{Q}}\right)\right) \\
& +L_{6}^{(P Q)}\left[\operatorname{str}\left(2 \mathrm{Bm}_{\mathrm{Q}}^{\dagger} \Sigma+\Sigma^{\dagger} 2 \mathrm{Bm}_{\mathrm{Q}}\right)\right]^{2}+\mathrm{L}_{7}^{(\mathrm{PQ})}\left[\operatorname{str}\left(2 \mathrm{Bm}_{\mathrm{Q}}^{\dagger} \Sigma-\Sigma^{\dagger} 2 \mathrm{Bm}_{\mathrm{Q}}\right)\right]^{2} \\
& +L_{8}^{(P Q)} \operatorname{str}\left(2 \mathrm{Bm}_{\mathrm{Q}}^{\dagger} \Sigma 2 \mathrm{Bm}_{\mathrm{Q}}^{\dagger} \Sigma+\Sigma^{\dagger} 2 \mathrm{Bm}_{\mathrm{Q}} \Sigma^{\dagger} 2 \mathrm{Bm}_{\mathrm{Q}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}^{(2)}= \frac{f^{2}}{8} \operatorname{tr}\left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right)+\frac{2 \mathrm{Bf}^{2}}{8} \operatorname{tr}\left(\mathrm{~m}_{\mathrm{Q}}^{\dagger} \Sigma+\Sigma^{\dagger} \mathrm{m}_{\mathrm{Q}}\right) \\
&+\frac{l_{1}}{4}\left[\operatorname{tr}\left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right)\right]^{2}+\frac{l_{2}}{4} \operatorname{tr}\left(\partial_{\mu} \Sigma \partial_{\nu} \Sigma^{\dagger}\right) \operatorname{tr}\left(\partial^{\mu} \Sigma \partial^{\nu} \Sigma^{\dagger}\right)+\frac{l_{3}+l_{4}}{16}\left[\operatorname{tr}\left(2 \mathrm{Bm}_{\mathrm{Q}}^{\dagger} \Sigma+\Sigma^{\dagger} 2 \mathrm{Bm}_{\mathrm{Q}}\right)\right]^{2} \\
&+\frac{l_{4}}{8} \operatorname{tr}\left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\left(2 \mathrm{Bm}_{\mathrm{Q}}^{\dagger} \Sigma+\Sigma^{\dagger} 2 \mathrm{Bm}_{\mathrm{Q}}\right)\right)+\frac{l_{7}}{16}\left[\operatorname{tr}\left(2 \mathrm{Bm}_{\mathrm{Q}}^{\dagger} \Sigma-\Sigma^{\dagger} 2 \mathrm{Bm}_{\mathrm{Q}}\right)\right]^{2} \\
& l_{1}=4 L_{1}^{(P Q)}+2 L_{3}^{(P Q)} \\
& l_{3}+l_{4}=16 L_{6}^{(P Q)}+8 L_{8}^{(P Q)} \\
& l_{7}=16 L_{7}^{(P Q)}+8 L_{8}^{(P Q)} l_{2}=4 L_{2}^{(P Q)} \\
& \square l_{4}=8 L_{4}^{(P Q)}+4 L_{5}^{(P Q)}
\end{aligned}
$$

Isospin Violation and Lattice QCD

AWL arXiv:0904.2404

Partially Quenched Hairpin Interactions

Partially Quenched (mixed-action) theories exhibit unitarity violating sicknesses - eg. double pole structure of flavor neutral mesons. Generally

$$
\mathcal{G}_{\eta_{u} \eta_{u}}\left(p^{2}\right)=\frac{i}{p^{2}-m_{\eta_{u}}^{2}+i \epsilon}-\frac{i}{2} \frac{p^{2}-m_{j j}^{2}}{\left(p^{2}-m_{\pi}^{2}\right)^{2}}
$$

$$
\mathcal{G}_{\eta_{u} \eta_{d}}\left(p^{2}\right)=-\frac{i}{2} \frac{p^{2}-m_{j j}^{2}}{\left(p^{2}-m_{\pi}^{2}\right)^{2}}
$$

$$
m_{j j}=\text { sea pion mass }
$$

It is useful to re-write Lagrangian in terms of the fields JW Chen, D O'Connell, AWL

$$
\begin{aligned}
\left|\pi^{0}\right\rangle & =\frac{1}{\sqrt{2}}\left(\left|\eta_{u}\right\rangle-\left|\eta_{d}\right\rangle\right) & |\bar{\eta}\rangle=\frac{1}{\sqrt{2}}\left(\left|\eta_{u}\right\rangle+\left|\eta_{d}\right\rangle\right) & \text { hep-lat/06| I } 003 \\
\mathcal{G}_{\pi^{0}} & =\frac{i}{p^{2}-m_{\pi}^{2}+i \epsilon} & \mathcal{G}_{\bar{\eta}}=\frac{i \Delta_{P Q}^{2}}{\left(p^{2}-m_{\pi}^{2}+i \epsilon\right)^{2}} & \Delta_{P Q}^{2}=m_{j j}^{2}-m_{\pi}^{2} \simeq 2 B\left(m_{q}^{s}\right.
\end{aligned}
$$

For symmetric isospin breaking:

$$
\mathcal{G}_{\pi^{0}}=\frac{i}{p^{2}-m_{\pi}^{2}+i \epsilon} \quad \mathcal{G}_{\bar{\eta}}=\frac{i \Delta_{P Q}^{4}}{\left(p^{2}-m_{\pi}^{2}+i \epsilon\right)^{3}} \quad \Delta_{P Q}^{2}=\hat{\delta}=B\left(m_{d}-m_{u}\right)=2 B \delta
$$

Isospin Violation and Lattice QCD

AWL arXiv:0904.2404

Partially Quenched Hairpin Interactions

In general, the pion mass at NLO is
$m_{\pi}^{2}=2 B m_{l}\left\{1+\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}} \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)+4 l_{3}^{r}(\mu) \frac{2 B m_{l}}{f_{\pi}^{2}}-\frac{\Delta_{P Q}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left[1+\ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right]+\frac{\Delta_{P Q}^{2}}{f_{\pi}^{2}} l_{P Q}(\mu)\right\}$

Partially Quenched
For symmetric isospin breaking:
$m_{\pi^{ \pm}}^{2}=2 B m_{l}\left\{1+\frac{2 B m_{l}}{\left(4 \pi f_{\pi}\right)^{2}} \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)+4 l_{3}(\mu) \frac{2 B m_{l}}{f_{\pi}^{2}}\right\}+\frac{\Delta_{P Q}^{4}}{2\left(4 \pi f_{\pi}\right)^{2}}$
Suppressed
Partially Quenched effects
$m_{\pi^{0}}^{2}=m_{\pi^{ \pm}}^{2}+4 l_{7} \frac{(2 B \delta)^{2}}{f_{\pi}^{2}}$ pion mass splitting free of "error" at this order, as expected: splitting exactly as in QCD at NLO

Isospin Violation and Lattice QCD

AWL arXiv:0904.2404

Partially Quenched Nucleon Lagrangian

$$
\begin{aligned}
\mathcal{L}^{(P Q)}= & (\overline{\mathcal{B}} v \cdot D \mathcal{B})+\frac{\alpha_{M}^{(P Q)}}{(4 \pi f)}\left(\overline{\mathcal{B}} \mathcal{B} \mathcal{M}_{+}\right)+\frac{\beta_{M}^{(P Q)}}{(4 \pi f)}\left(\overline{\mathcal{B}} \mathcal{M}_{+} \mathcal{B}\right)+\frac{\sigma_{M}^{(P Q)}}{(4 \pi f)}(\overline{\mathcal{B}} \mathcal{B}) \operatorname{tr}\left(\mathcal{M}_{+}\right) \\
& -\left(\overline{\mathcal{T}}_{\mu} v \cdot D \mathcal{T}_{\mu}\right)-\Delta\left(\overline{\mathcal{T}}_{\mu} \mathcal{T}_{\mu}\right)+\frac{\gamma_{M}^{(P Q)}}{(4 \pi f)}\left(\overline{\mathcal{T}}_{\mu} \mathcal{M}_{+} \mathcal{T}_{\mu}\right)-\frac{\bar{\sigma}_{M}^{(P Q)}}{(4 \pi f)}\left(\overline{\mathcal{T}}_{\mu} \mathcal{T}_{\mu}\right) \operatorname{tr}\left(\mathcal{M}_{+}\right) \\
& +2 \alpha^{(P Q)}\left(\overline{\mathcal{B}} S^{\mu} \mathcal{B} A_{\mu}\right)+2 \beta^{(P Q)}\left(\overline{\mathcal{B}} S^{\mu} A_{\mu} \mathcal{B}\right)+2 \mathcal{H}^{(P Q)}\left(\overline{\mathcal{T}}^{\nu} S^{\mu} A_{\mu} \mathcal{T}_{\nu}\right)+\sqrt{\frac{3}{2}} \mathcal{C}\left[\left(\overline{\mathcal{T}}^{\nu} A_{\nu} \mathcal{B}\right)+\left(\overline{\mathcal{B}} A_{\nu} \mathcal{T}^{\nu}\right)\right] \\
\mathcal{L}= & \bar{N} v \cdot D N+\frac{\alpha_{M}}{(4 \pi f)} \bar{N} \mathcal{M}_{+} N+\frac{\sigma_{M}}{(4 \pi f)} \bar{N} N \operatorname{tr}\left(\mathcal{M}_{+}\right)
\end{aligned}
$$

$$
+\left(\bar{T}_{\mu} v \cdot D T_{\mu}\right)+\Delta\left(\bar{T}_{\mu} T_{\mu}\right)+\frac{\gamma_{M}}{(4 \pi f)}\left(\bar{T}_{\mu} \mathcal{M}_{+} T_{\mu}\right)+\frac{\bar{\sigma}_{M}}{(4 \pi f)}\left(\bar{T}_{\mu} T_{\mu}\right) \operatorname{tr}\left(\mathcal{M}_{+}\right)
$$

$$
+2 g_{A} \bar{N} S \cdot A N-2 g_{\Delta \Delta} \bar{T}_{\mu} S \cdot A T_{\mu}+g_{\Delta N}\left[\bar{T}_{\mu}^{k j i} A_{i}^{\mu, i^{\prime}} \epsilon_{j i^{\prime}} N_{k}+h . c .\right]
$$

$$
\begin{aligned}
\alpha_{M} & =\frac{2}{3} \alpha_{M}^{(P Q)}-\frac{1}{3} \beta_{M}^{(P Q)}, & & g_{A}=\frac{2}{3} \alpha^{(P Q)}-\frac{1}{3} \beta^{(P Q)}, g_{1}=\frac{1}{3} \alpha^{(P Q)}+\frac{4}{3} \beta^{P Q)}, \\
\sigma_{M} & =\sigma_{M}^{(P Q)}+\frac{1}{6} \alpha_{M}^{(P Q)}+\frac{2}{3} \beta_{M}^{(P Q)}, & & g_{\Delta \Delta}=\mathcal{H}, g_{\Delta N}=-\mathcal{C} \\
\gamma_{M} & =\gamma_{M}^{(P Q)}, \bar{\sigma}_{M}=\bar{\sigma}_{M}^{(P Q)} & &
\end{aligned}
$$

Isospin Violation and Lattice QCD

AWL arXiv:0904.2404

Nucleon Masses

$$
\begin{aligned}
M_{n}= & M_{0}+\frac{2 B \delta}{4 \pi f_{\pi}} \frac{\alpha_{N}}{2}+\frac{m_{\pi}^{2}}{4 \pi f_{\pi}}\left(\frac{\alpha_{N}}{2}+\sigma_{N}(\mu)\right)-\frac{3 \pi g_{A}^{2}}{\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{3}-\frac{8 g_{\pi N \Delta}^{2}}{3\left(4 \pi f_{\pi}\right)^{2}} \mathcal{F}\left(m_{\pi}, \Delta, \mu\right) \\
& +\frac{3 \pi \Delta_{P Q}^{4}\left(g_{A}+g_{1}\right)^{2}}{8 m_{\pi}\left(4 \pi f_{\pi}\right)^{2}} \\
M_{p}= & M_{0}-\frac{2 B \delta}{4 \pi f_{\pi}} \frac{\alpha_{N}}{2}+\frac{m_{\pi}^{2}}{4 \pi f_{\pi}}\left(\frac{\alpha_{N}}{2}+\sigma_{N}(\mu)\right)-\frac{3 \pi g_{A}^{2}}{\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{3}-\frac{8 g_{\pi N \Delta}^{2}}{3\left(4 \pi f_{\pi}\right)^{2}} \mathcal{F}\left(m_{\pi}, \Delta, \mu\right) \\
& +\frac{3 \pi \Delta_{P Q}^{4}\left(g_{A}+g_{1}\right)^{2}}{8 m_{\pi}\left(4 \pi f_{\pi}\right)^{2}}
\end{aligned}
$$

Notice in the isospin splitting, not only the isospin violation appears as expected, but the non-analytic pion loop corrections exactly cancel, and the PQ effects exactly cancel! (This is only with "symmetric isospin breaking")

$$
M_{n}-M_{p}=2 \alpha_{N} \delta \frac{B}{4 \pi f_{\pi}}+\mathcal{O}\left(\delta^{2}, \delta m_{\pi}\right)
$$

The expansion for $\mathrm{M}_{\mathrm{n}}-\mathrm{M}_{\mathrm{p}}$ becomes similar to that of the pions (only even powers of the pion mass)

AWL arXiv:0904.2404

"Ruler Plot" (blame Brian Tiburzi) (Lattice 2008, Chiral Dynamics 2012 AWL)

Trying to fit nucleon mass results to baryon chiral perturbation theory, with g_{A} as a free parameter, leads to $g_{\mathrm{A}} \sim 0$. Serious challenges to convergence of $\mathrm{SU}(2)$ baryon chiral perturbation theory

$\frac{\text { Isospin Violation an }}{\text { NNLO operators (SU(2)) }}$

AWL arXiv:0904.2404

$$
\begin{aligned}
\mathcal{L}_{M}=\frac{1}{(4 \pi f)^{3}}\{ & b_{1}^{M} \bar{N} \mathcal{M}_{+}^{2} N+b_{5}^{M} \bar{N} N \operatorname{tr}\left(\mathcal{M}_{+}^{2}\right)+b_{6}^{M} \bar{N} \mathcal{M}_{+} N \operatorname{tr}\left(\mathcal{M}_{+}\right)+b_{8}^{M} \bar{N} N\left[\operatorname{tr}\left(\mathcal{M}_{+}\right)\right]^{2} \\
& +t_{1}^{M} \bar{T}_{\mu}^{k j i}\left(\mathcal{M}_{+} \mathcal{M}_{+}\right)_{i^{\prime}}{ }^{\prime} T_{\mu, i^{\prime} j k}+t_{2}^{M} \bar{T}_{\mu}^{k j i}\left(\mathcal{M}_{+}\right)_{i^{i}}{ }^{\prime}\left(\mathcal{M}_{+}\right)_{j} j^{\prime} T_{\mu, i^{\prime} j^{\prime} k}+t_{3}^{M} \bar{T}_{\mu} T_{\mu} \operatorname{tr}\left(\mathcal{M}_{+}^{2}\right) \\
& \left.+t_{4}^{M}\left(\bar{T}_{\mu} \mathcal{M}_{+} T_{\mu}\right) \operatorname{tr}\left(\mathcal{M}_{+}\right)+t_{5}^{M} \bar{T}_{\mu} T_{\mu}\left[\operatorname{tr}\left(\mathcal{M}_{+}\right)\right]^{2}\right\}
\end{aligned}
$$

In QCD

$\delta m_{N}=b_{5}^{M} \frac{m_{\pi}^{4}+(2 B \delta)^{2}}{2\left(4 \pi f_{\pi}\right)^{3}}$
In symmetric isospin breaking PQQCD

$$
\delta m_{N}=b_{5}^{M} \frac{m_{\pi}^{4}}{2\left(4 \pi f_{\pi}\right)^{3}}
$$

This is an error of this partially quenched calculation, which must be removed from the LQCD calculation, to compare with experiment. But NOTE! In $\mathrm{M}_{\mathrm{n}}-\mathrm{M}_{\mathrm{p}}$, this error exactly cancels (as we expect)

Isospin Violation and Lattice QCD

AWL arXiv:0904.2404

Full NNLO Nucleon mass splitting:

$$
\begin{aligned}
M_{n}-M_{p}=\frac{2 B \delta}{4 \pi f_{\pi}}\{ & \alpha_{N}+\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left(b_{1}^{M}+b_{6}^{M}\right)+\frac{\mathcal{J}\left(m_{\pi}, \Delta, \mu\right)}{\left(4 \pi f_{\pi}\right)^{2}} 4 g_{\pi N \Delta}^{2}\left(\frac{5}{9} \gamma_{M}-\alpha_{N}\right) \\
& \frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left[\frac{20}{9} \gamma_{M} g_{\pi N \Delta}^{2}-4 \alpha_{N}\left(g_{A}^{2}+g_{\pi N \Delta}^{2}\right)-\alpha_{N}\left(6 g_{A}^{2}+1\right) \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right] \\
& \left.+\frac{\alpha_{N} \Delta_{P Q}^{4}}{m_{\pi}^{2}\left(4 \pi f_{\pi}\right)^{2}}\left(2-\frac{3}{2}\left(g_{A}+g_{1}\right)^{2}\right)\right\}
\end{aligned}
$$

LQCD Calculation

lattice QCD calculation performed using the Spectrum Collaboration anisotropic cloverWilson gauge ensembles (developed @ JLAB)

ensemble			$a_{t} m_{\pi}$	$a_{t} m_{K}$	$a_{t} \delta\left[N_{c f g} \times N_{s r c}\right]$				
L	T	$a_{t} m_{l}$	$a_{t} m_{s}$			0.0002	0.0004	0.0010	0.0020
16	128	-0.0830	-0.0743	0.0800	0.1033	207×16	207×16	207×16	207×16
16	128	-0.0840	-0.0743	-	-	166×25	166×25	166×25	166×50
20	128	-0.0840	-0.0743	-	-	120×25	-	-	-
24	128	-0.0840	-0.0743	-	-	97×25	-	193×25	-
32	256	-0.0840	-0.0743	0.0689	0.0968	291×10	291×10	291×10	-
24	128	-0.0860	-0.0743	-	-	118×26	-	-	-
32	256	-0.0860	-0.0743	0.0393	0.0833	842×11	-	-	-

C.Aubin,W.Detmold, E Mereghetti, K. Orginos, S.Syritsyn, B.Tiburzi, AWL

LQCD Calculation

Scale Setting: $\quad l_{\Omega}=\frac{m_{\pi}^{2}}{m_{\Omega}^{2}} \quad s_{\Omega}=\frac{2 m_{K}^{2}-m_{\pi}^{2}}{m_{\Omega}^{2}}$
Compute these masses, then extrapolate
the scale is determined at the physical point

$$
\begin{aligned}
a_{t} m_{\Omega}^{*} & =a_{t} m_{\Omega}\left(l_{\Omega}^{*}, s_{\Omega}^{*}\right) \\
a_{t}^{*} & \equiv \frac{a_{t} m_{\Omega}^{*}}{m_{\Omega}^{\text {phy }}}
\end{aligned}
$$

This is a "quark mass independent" scale setting scheme

$$
m_{h}[\mathrm{MeV}]=\frac{a_{t} m_{h}}{a_{t} m_{\Omega}} \frac{a_{t} m_{\Omega}}{a_{t} m_{\Omega}^{*}} m_{\Omega}^{\text {phy }}=a_{t} m_{h} \frac{m_{\Omega}^{\text {phy }}}{a_{t} m_{\Omega}^{*}}=a_{t} m_{h} \frac{1}{a_{t}^{*}}
$$

But recall the lattices generated were generated with fixed strange quark mass this makes it challenging to extrapolate in S_{Ω}

Also, input strange quark mass was about 10% too light

$$
a_{t} m_{s}^{\text {sea }}=-0.0743 \quad a_{t} m_{s}^{v a l}=\underset{\text { lightest }}{\{-0.0743,-0.0728,-0.0713\}} \text { heaviest }
$$

Scale Setting

Extrapolation and scale setting
$m_{\Omega}\left(l_{\Omega}, s_{\Omega}\right)=m_{0}+c_{l}^{(1)} l_{\Omega}+c_{s}^{(1)} s_{\Omega}+\cdots$
but we also have the partially quenched results using $\mathrm{SU}(3)$ symmetry to motivate the formula:
$m_{\Omega}\left(l_{\Omega}, s_{\Omega}^{\text {sea }}, s_{\Omega}^{v a l}\right)=m_{0}+\tilde{c}_{l}^{(1)}\left(l_{\Omega}+\frac{1}{2} s_{\Omega}^{\text {sea }}\right)+\tilde{c}_{s}^{(1)} s_{\Omega}^{v a l}+\cdots$
TABLE II: Correlated extrapolation

PQ	$a_{t} m_{0}$	$a_{t} c_{l}^{(1)}$	$a_{t} c_{s}^{(1)}$	χ^{2}	dof	Q	$a_{t} m_{\Omega}^{\text {phys }}$	$a_{t}[\mathrm{fm}]$	$a_{t}^{-1}[\mathrm{MeV}]$
no	$0.146(13)(20)$	$0.49(6)(7)$	$0.73(7)(11)$	6.70	6	0.35	$0.2741(18)(22)$	$0.0322(2)(3)$	$6101(40)(49)$
yes	$0.108(14)(23)$	$0.48(6)(7)$	$0.73(7)(11)$	6.94	6	0.33	$0.2750(62)(78)$	$0.0324(7)(9)$	$6082(137)(173)$

partial quenching has no discernible effect on scale or $c_{l, s}^{(1)}$

ensemble			m_{π}	m_{K}	$a_{t} \delta\left[N_{c f g} \times N_{s r c}\right]$				
L	T	$a_{t} m_{l}$	$a_{t} m_{s}$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	0.0002	0.0004	0.0010	0.0020
16	128	-0.0830	-0.0743	488	620	207×16	207×16	207×16	207×16
16	128	-0.0840	-0.0743	420	591	166×25	166×25	166×25	166×50
20	128	-0.0840	-0.0743	420	591	120×25	-	-	-
24	128	-0.0840	-0.0743	420	591	97×25	-	193×25	-
32	256	-0.0840	-0.0743	420	591	291×10	291×10	291×10	-
24	128	-0.0860	-0.0743	240	508	118×26	-	-	-
32	256	-0.0860	-0.0743	240	508	842×11	-	-	-

LQCD Calculation
 $M_{n}-M_{p}$
 Δ PRELIMINARY

Nucleon Mass Splitting

Ratio $\mathrm{C}_{\mathrm{n}}(\mathrm{t}) / \mathrm{C}_{\mathrm{p}}(\mathrm{t})$

LQCD Calculation $\quad M_{n}-M_{p}$

Nucleon Mass Splitting

$$
\begin{aligned}
\frac{C_{n}(t)}{C_{p}(t)} & =e^{-\delta M_{N} t} \frac{A_{0}+\delta_{0}^{n}+\left(A_{1}+\delta_{1}^{n}\right) e^{-\left(\Delta+\delta \Delta^{n}\right) t}+\cdots}{A_{0}+\delta_{0}^{p}+\left(A_{1}+\delta_{1}^{p}\right) e^{-\left(\Delta+\delta \Delta^{p}\right) t}} \\
& =e^{-\delta M_{N} t}\left\{1+\left(\delta_{0}^{n}-\delta_{0}^{p}\right)+\left[\delta_{1}^{n}-\delta_{1}^{p}-A_{1}\left(\delta \Delta^{n}-\delta \Delta^{p}\right) t\right] e^{-\Delta t}\right\}
\end{aligned}
$$

In ratio, excited state mass gap is the nucleon excited state, $\Delta \gg M_{n}-M_{p}$
Ratio $\mathrm{C}_{\mathrm{n}}(\mathrm{t}) / \mathrm{C}_{\mathrm{p}}(\mathrm{t})$

LQCD Calculation $\quad M_{n}-M_{p}$

Nucleon Mass Splitting

Ratio $\mathrm{C}_{\mathrm{n}}(\mathrm{t}) / \mathrm{C}_{\mathrm{p}}(\mathrm{t})$

$$
\begin{aligned}
\frac{C_{n}(t)}{C_{p}(t)} & =e^{-\delta M_{N} t} \frac{A_{0}+\delta_{0}^{n}+\left(A_{1}+\delta_{1}^{n}\right) e^{-\left(\Delta+\delta \Delta^{n}\right) t}+\cdots}{A_{0}+\delta_{0}^{p}+\left(A_{1}+\delta_{1}^{p}\right) e^{-\left(\Delta+\delta \Delta^{p}\right) t}} \\
& =e^{-\delta M_{N} t}\left\{1+\left(\delta_{0}^{n}-\delta_{0}^{p}\right)+\left[\delta_{1}^{n}-\delta_{1}^{p}-A_{1}\left(\delta \Delta^{n}-\delta \Delta^{p}\right) t\right] e^{-\Delta t}\right\}
\end{aligned}
$$

In ratio, excited state mass gap is the nucleon excited state, $\Delta \gg M_{n}-M_{p}$

LQCD Calculation

slope depends slightly on pion mass

no evidence for deviations from linear δ dependence

LQCD Calculation

polynomial in m_{π}^{2}
NNLO χ PT

$$
\begin{array}{r}
\delta M_{n-p}^{m_{d}-m_{u}}=\delta\left\{\alpha+\beta \frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\right\} \quad \delta M_{n-p}^{m_{d}-m_{u}}=\delta\left\{\alpha\left[1-\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left(6 g_{A}^{2}+1\right) \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right]\right. \\
\left.\left(g_{A}=1.27, f_{\pi}=130 \mathrm{MeV}\right) \quad+\beta(\mu) \frac{2 m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\right\}
\end{array}
$$

$$
\chi^{2} / d o f=13 / 5=2.6 \quad \chi^{2} / d o f=1.66 / 5=0.33
$$

LQCD Calculation

$$
\begin{array}{cc}
\begin{array}{c}
\text { polynomial in } m_{\pi}^{2} \\
\delta M_{n-p}^{m_{d}-m_{u}}=\delta\left\{\alpha+\beta \frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\right\}
\end{array} & \begin{array}{c}
\text { NNLO } \chi \mathrm{PT} \\
\delta M_{n-p}^{m_{d}-m_{u}}=\delta\left\{\alpha\left[1-\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left(6 g_{A}^{2}+1\right) \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right]\right. \\
\chi^{2} / \text { dof }=13 / 5=2.6
\end{array} \\
& \left.\left.f_{\pi}=130 \mathrm{MeV}\right) \quad+\beta(\mu) \frac{2 m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\right\} \\
\chi^{2} / d o f=1.34 / 4=0.33
\end{array}
$$

LQCD Calculation

$\delta M_{n-p}^{m_{d}-m_{u}}=\delta\left\{\alpha\left[1-\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left(6 g_{A}^{2}+1\right) \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right]\right.$

$$
\left.\left(g_{A}=1.27, f_{\pi}=130 \mathrm{MeV}\right) \quad+\beta(\mu) \frac{2 m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\right\}
$$

$$
\chi^{2} / d o f=1.66 / 5=0.33
$$

ratio of NNLO to LO
correction
C.Aubin,W.Detmold, Emanuele Mereghetti, K.Orginos, S.Syritsyn, B.Tiburzi,

LQCD Calculation

NNLO χ PT

$$
\delta M_{n-p}^{m_{d}-m_{u}}=\delta\left\{\alpha\left[1-\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left(6 g_{A}^{2}+1\right) \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right] \quad \begin{array}{l}
\text { exclude heavy mass } \\
\left.2 m_{2}^{2}\right)
\end{array}\right.
$$

$$
\begin{aligned}
& \begin{array}{l}
\left.\left(g_{A}=1.27, f_{\pi}=130 \mathrm{MeV}\right) \quad+\beta(\mu) \frac{2 m_{\pi}^{2}}{\left(4 \pi f_{\pi}^{2}\right)^{2}}\right\} \\
\quad \chi^{2} / d o f=1.66 / 5=0.33
\end{array} \\
& \text { this is striking evidence of a chiral logarithm }
\end{aligned}
$$

C.Aubin,W.Detmold, Emanuele Mereghetti, K.Orginos, S.Syritsyn, B.Tiburzi,

LQCD Calculation

$\delta M_{n-p}^{\delta}=\delta\left\{\alpha\left[1-\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left(6 g_{A}^{2}+1\right) \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right]\right.$

$\delta M_{n-p}^{\delta}=\delta\left\{\alpha+\beta \frac{m_{\pi}^{2}}{8 \pi^{2} f_{\pi}^{2}}+\gamma \frac{m_{\pi}^{4}}{\left(8 \pi^{2} f_{\pi}^{2}\right)^{2}}\right\}$

$$
\left.+\beta(\mu) \frac{2 m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\right\}
$$

adding ${ }^{\gamma} \frac{m_{\pi}^{4}}{\left(8 \pi^{2} f_{\pi}^{2}\right)^{2}}$ counterterm does not improve fit: γ consistent with zero
higher order polynomial gives good fit but poorer convergence

LQCD Calculation $\quad M_{\Xi^{-}}-M_{\Xi^{0}}$

If this story is true, we should be able to predict the behavior of the Ξ isospin splitting. The Ξ is also an iso-doublet, so the chiral Lagrangian will be identical in form, with only the LECs being different.

$$
\begin{aligned}
& \delta M_{N}^{m_{\alpha}-m_{a}}=\delta\left\{\alpha_{N}\left[1-\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left(6 g_{A}^{2}+1\right) \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right] \quad \delta M_{\Xi}^{m_{\Delta}-m_{a}}=\delta\left\{\alpha_{E}\left[1-\frac{m_{\pi}^{2}}{\left(4 \pi f_{T}\right)^{2}}\left(6 g_{\Xi}^{2}+1\right) \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right]\right.\right. \\
& \left.+\beta_{N}(\mu) \frac{2 m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\right\} \\
& \left.+\beta=(\mu) \frac{2 m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\right\} \\
& g_{A}=1.27 \quad g_{\Xi} \simeq 0.24
\end{aligned}
$$

Contribution from log should be ~ 10 times smaller, or, rather insignificant

LQCD Calculation $\quad M_{\Xi^{-}}-M_{\Xi^{0}}$

\triangle Preliminary

$$
\begin{array}{cc}
\delta M_{N}^{m_{d}-m_{u}}=\delta\left\{\alpha_{N}\left[1-\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left(6 g_{A}^{2}+1\right) \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right]\right. & \delta M_{\Xi}^{m_{d}-m_{u}}=\delta\left\{\alpha_{\Xi}\left[1-\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left(6 g_{\Xi}^{2}+1\right) \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right]\right. \\
g_{A}=1.27 & \left.+\beta_{N}(\mu) \frac{2 m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\right\}
\end{array} \quad \begin{aligned}
& \left.+\beta_{\Xi}(\mu) \frac{2 m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\right\}
\end{aligned}
$$

$$
\alpha_{N}=1.66 \pm 0.06 \pm 0.09
$$

$\alpha_{\Xi}=4.50 \pm 0.24 \pm 0.42$

LQCD Calculation $M_{\Xi^{-}}-M_{\Xi^{0}}$

A prelimmary

$$
\begin{array}{cc}
\delta M_{N}^{m_{d}-m_{u}}=\delta\left\{\alpha_{N}\left[1-\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left(6 g_{A}^{2}+1\right) \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right]\right. & \delta M_{\Xi}^{m_{d}-m_{u}}=\delta\left\{\alpha_{\Xi}\left[1-\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left(6 g_{\Xi}^{2}+1\right) \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right]\right. \\
g_{A}=1.27 & \left.+\beta_{N}(\mu) \frac{2 m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\right\}
\end{array} \quad \begin{aligned}
& \left.+\beta_{\Xi}(\mu) \frac{2 m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\right\}
\end{aligned}
$$

$$
\alpha_{N}=1.66 \pm 0.06 \pm 0.09
$$

$$
\alpha_{\Xi}=4.50 \pm 0.24 \pm 0.42
$$

$$
\alpha_{\Xi}=-\left(b_{F}-b_{D}\right)
$$

$\alpha_{N}=-\left(b_{F}+b_{D}\right)$

LQCD Calculation $M_{\Xi^{-}}-M_{\Xi^{0}}$

Now for something really crazy: combine $\mathrm{SU}(3)$ and large- N_{c} expansions

$$
\begin{aligned}
& R_{3}\left(m_{l}, m_{s}\right)=\frac{20}{39} b_{1}\left(m_{s}-m_{l}\right)-\frac{20 a_{1}^{2}-5 a_{2}^{2}}{117} \frac{3 \mathcal{F}_{\pi}^{0}-2 \mathcal{F}_{K}^{0}-\mathcal{F}_{\eta}^{0}}{(4 \pi f)^{2}} \\
& b_{D}=\frac{1}{4} b_{2} \\
& -\frac{a_{1}^{2}}{117}\left[35 \frac{3 \mathcal{F}_{\pi}^{\Delta}-2 \mathcal{F}_{K}^{\Delta}-\mathcal{F}_{\eta}^{\Delta}}{(4 \pi f)^{2}}-\frac{3 \mathcal{F}_{\pi}^{-\Delta}-2 \mathcal{F}_{K}^{-\Delta}-\mathcal{F}_{\eta}^{-\Delta}}{(4 \pi f)^{2}}\right], \quad b_{F}=\frac{1}{2} b_{1}+\frac{1}{6} b_{2}
\end{aligned}
$$

$$
\begin{aligned}
R_{4}\left(m_{l}, m_{s}\right)= & -\frac{5}{18} b_{2}\left(m_{s}-m_{l}\right) \\
& +\frac{a_{1}^{2}+4 a_{1} a_{2}+a_{2}^{2}}{36} \frac{3 \mathcal{F}_{\pi}^{0}-2 \mathcal{F}_{K}^{0}-\mathcal{F}_{\eta}^{0}}{(4 \pi f)^{2}}-\frac{2 a_{1}^{2}}{9} \frac{3 \mathcal{F}_{\pi}^{\Delta}-2 \mathcal{F}_{K}^{\Delta}-\mathcal{F}_{\eta}^{\Delta}}{(4 \pi f)^{2}}
\end{aligned}
$$

LQCD Calculation $M_{\Xi^{-}}-M_{\Xi^{0}}$

Now for something really crazy: combine $\mathrm{SU}(3)$ and large- N_{c} expansions

Fit yields

$$
b_{1}[\mathrm{NLO}]=-6.6(5), \quad b_{2}[\mathrm{NLO}]=4.3(4), \quad a_{1}[\mathrm{NLO}]=1.4(1) .
$$

$D=0.70(5)$
$F=0.47(3)$,
$C=-1.4(1)$,
$H=-2.1(2)$
$b_{D} \simeq 1.07$
$b_{F} \simeq-2.58$

LQCD Calculation $\quad M_{\Xi^{-}}-M_{\Xi^{0}}$

$\delta M_{N}^{m_{d}-m_{u}}=\delta\left\{\alpha_{N}\left[1-\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left(6 g_{A}^{2}+1\right) \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right] \quad \delta M_{\Xi}^{m_{d}-m_{u}}=\delta\left\{\alpha_{\Xi}\left[1-\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left(6 g_{\Xi}^{2}+1\right) \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right]\right.\right.$ $\left.+\beta_{N}(\mu) \frac{2 m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\right\}$ $\left.+\beta_{\Xi}(\mu) \frac{2 m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\right\}$
 $g_{\Xi} \simeq 0.24$

$\alpha_{N}=1.66 \pm 0.06 \pm 0.09$

$$
\frac{\alpha_{\Xi}}{\alpha_{N}}=\frac{4.50}{1.66} \simeq 2.71 \quad \alpha_{\Xi}=4.50 \pm 0.24 \pm 0.42
$$

Expectations from SU(3): $\frac{\alpha_{\Xi}}{\alpha_{N}}=\frac{b_{F}-b_{D}}{b_{F}+b_{D}} \simeq 2.43$
agreement within
uncertainties and 10% !

Computational Strategy

- QCD Theta term
$\mathcal{L}_{C P V}=-\frac{g_{s}^{2} \bar{\theta}}{32 \pi^{2}} \tilde{G}_{\mu \nu} G^{\mu \nu} \longmapsto \mathcal{L}_{C P V}^{\chi}=-\frac{\bar{g}_{0}}{2 F_{\pi}} \bar{N} \vec{\pi} \cdot \vec{\tau} N$
Symmetries $\longmapsto \bar{g}_{0}=\frac{\delta M_{n-p}^{m_{d}-m_{u}}}{m_{d}-m_{u}} \frac{2 m_{d} m_{u}}{m_{d}+m_{u}} \bar{\theta}$

$$
\delta M_{n-p}^{m_{d}-m_{u}}=\alpha\left(m_{d}-m_{u}\right)
$$

Simple spectroscopic calculation allows us to determine this long-range CP-Violating pion-nucleon coupling

This strategy was developed in conversations with Emanuele Mereghetti while we were both at LBNL

Computational Strategy

- Quark Chromo-EDM Operators

$$
\mathcal{L}_{\bar{q} q}^{6}=-\frac{i}{2} \bar{q} \sigma^{\mu \nu} \gamma_{5}\left(\tilde{d}_{0}+\tilde{d}_{3} \tau_{3}\right) G_{\mu \nu} q-\frac{1}{2} \bar{q} \sigma^{\mu \nu}\left(\tilde{c}_{3} \tau_{3}+\tilde{c}_{0}\right) G_{\mu \nu} q
$$

Computational Strategy

- Quark Chromo-EDM Operators $\mathcal{L}_{\bar{q} q}^{6}=-\frac{i}{2} \bar{q} \sigma^{\mu \nu} \gamma_{5}\left(\tilde{d}_{0}+\tilde{d}_{3} \tau_{3}\right) G_{\mu \nu} q-\frac{1}{2} \bar{q} \sigma^{\mu \nu}\left(\tilde{c}_{3} \tau_{3}+\tilde{c}_{0}\right) G_{\mu \nu} q$ Symmetries $\longrightarrow \bar{g}_{0}=\delta_{q} M_{N} \frac{\tilde{d}_{0}}{\tilde{c}_{3}}+\delta M_{N} \frac{\Delta_{q} m_{\pi}^{2}}{m_{\pi}^{2}} \frac{\tilde{d}_{3}}{\tilde{c}_{0}}$

$$
\bar{g}_{3}=-2 \sigma_{\pi N}\left(\frac{\Delta_{q} M_{N}}{\sigma_{\pi N}}-\frac{\Delta_{q} m_{\pi}^{2}}{m_{\pi}^{2}}\right) \frac{\tilde{d}_{3}}{\tilde{c}_{0}}
$$

Computational Strategy

- Quark Chromo-EDM Operators
$\mathcal{L}_{\bar{q} q}^{6}=-\frac{i}{2} \bar{q} \sigma^{\mu \nu} \gamma_{5}\left(\tilde{d}_{0}+\tilde{d}_{3} \tau_{3}\right) G_{\mu \nu} q-\frac{1}{2} \bar{q} \sigma^{\mu \nu}\left(\tilde{c}_{3} \tau_{3}+\tilde{c}_{0}\right) G_{\mu \nu} q$
Symmetries $\longmapsto \bar{g}_{0}=\delta_{q} M_{N} \frac{\tilde{d}_{0}}{\tilde{c}_{3}}+\delta M_{N} \frac{\Delta_{q} m_{\pi}^{2}}{m_{\pi}^{2}} \frac{\tilde{d}_{3}}{\tilde{c}_{0}}$

$$
\bar{g}_{3}=-2 \sigma_{\pi N}\left(\frac{\Delta_{q} M_{N}}{\sigma_{\pi N}}-\frac{\Delta_{q} m_{\pi}^{2}}{m_{\pi}^{2}}\right) \frac{\tilde{d}_{3}}{\tilde{c}_{0}}
$$

Again, all that is needed are simple spectroscopic quantities $\delta M_{N}=$ nucleon mass splitting induced by $\mathcal{O}=\delta \bar{q} \tau_{3} q$,
$\sigma_{\pi N}=$ nucleon sigma-term induced by $\mathcal{O}=-\bar{m} \bar{q} q$,
$\delta_{q} M_{N}=$ nucleon mass splitting induced by $\mathcal{O}=-\left(\tilde{c}_{3} / 2\right) \bar{q} \sigma^{\mu \nu} \tau_{3} G_{\mu \nu} q$, $\Delta_{q} M_{N}=$ nucleon sigma-term induced by $\mathcal{O}=-\left(\tilde{c}_{0} / 2\right) \bar{q} \sigma^{\mu \nu} G_{\mu \nu} q$, $\Delta_{q} m_{\pi}^{2}=$ pion sigma-term induced by $\mathcal{O}=-\left(\tilde{c}_{0} / 2\right) \bar{q} \sigma^{\mu \nu} G_{\mu \nu} q$,

Computational Strategy

- Quark Chromo-EDM Operators

$$
\mathcal{O}_{0}=-\frac{1}{2} \bar{q} \sigma_{\mu \nu} G^{\mu \nu} q \quad \mathcal{O}_{3}=-\frac{1}{2} \bar{q} \tau_{3} \sigma_{\mu \nu} G^{\mu \nu} q
$$

You may recognize these operators...

Computational Strategy

- Quark Chromo-EDM Operators

$$
\mathcal{O}_{0}=-\frac{1}{2} \bar{q} \sigma_{\mu \nu} G^{\mu \nu} q \quad \mathcal{O}_{3}=-\frac{1}{2} \bar{q} \tau_{3} \sigma_{\mu \nu} G^{\mu \nu} q
$$

You may recognize these operators...
The quantities of interest can be determined by making use of the Feynman-Hellman Theorem and simple spectroscopic LQCD calculations

$$
\Delta_{q} M_{N}=\tilde{c}_{0} \frac{\partial M_{N}\left[\tilde{c}_{0} \mathcal{O}_{0}\right]}{\partial \tilde{c}_{0}} \quad \delta_{q} M_{N}=\tilde{c}_{3} \frac{\partial M_{N}\left[\tilde{c}_{c} \mathcal{O}_{3}\right]}{\partial \tilde{c}_{3}}
$$

Computational Strategy

- Quark Chromo-EDM Operators

$$
\mathcal{O}_{0}=-\frac{1}{2} \bar{q} \sigma_{\mu \nu} G^{\mu \nu} q \quad \mathcal{O}_{3}=-\frac{1}{2} \bar{q} \tau_{3} \sigma_{\mu \nu} G^{\mu \nu} q
$$

You may recognize these operators...
The quantities of interest can be determined by making use of the Feynman-Hellman Theorem and simple spectroscopic LQCD calculations

$$
\Delta_{q} M_{N}=\tilde{c}_{0} \frac{\partial M_{N}\left[\tilde{c}_{0} \mathcal{O}_{0}\right]}{\partial \tilde{c}_{0}} \quad \delta_{q} M_{N}=\tilde{c}_{3} \frac{\partial M_{N}\left[\tilde{c}_{c} \mathcal{O}_{3}\right]}{\partial \tilde{c}_{3}}
$$

We also need to determine

$$
\begin{array}{ll}
\sigma_{\pi N}=m_{l} \frac{\partial M_{N}}{\partial m_{l}} & \delta M_{N}=\delta \frac{\partial M_{N}}{\partial \delta} \\
m_{l}=\frac{m_{d}+m_{u}}{2} & \delta=\frac{m_{d}-m_{u}}{2}
\end{array}
$$

Computational Strategy

- Quark Chromo-EDM Operators

$$
\mathcal{O}_{0}=-\frac{1}{2} \bar{q} \sigma_{\mu \nu} G^{\mu \nu} q \quad \mathcal{O}_{3}=-\frac{1}{2} \bar{q} \tau_{3} \sigma_{\mu \nu} G^{\mu \nu} q
$$

Simple spectroscopic LQCD calculations can be used to determine these important long-range CP-Violating pionnucleon couplings

Spectroscopic calculations are what we are best at

Computational Strategy

- Quark Chromo-EDM Operators

$$
\mathcal{O}_{0}=-\frac{1}{2} \bar{q} \sigma_{\mu \nu} G^{\mu \nu} q \quad \mathcal{O}_{3}=-\frac{1}{2} \bar{q} \tau_{3} \sigma_{\mu \nu} G^{\mu \nu} q
$$

The leading contribution will come from the valence quarks (experience with valence/sea quark mass contribution to nucleon mass) - begin with this contribution

- Invert the valence quarks with a modified Dirac operator

$$
D_{\lambda}=D+\lambda\left\{\mathcal{O}_{0}, \mathcal{O}_{3}\right\}
$$

- Construct nucleon correlation function with these quarks and determine the resulting nucleon mass
- Vary λ and determine slope of mass correction to get derivative

$$
\Delta_{q} M_{N}=\tilde{c}_{0} \frac{\partial M_{N}\left[\tilde{c}_{0} \mathcal{O}_{0}\right]}{\partial \tilde{c}_{0}} \quad \delta_{q} M_{N}=\tilde{c}_{3} \frac{\partial M_{N}\left[\tilde{c}_{c} \mathcal{O}_{3}\right]}{\partial \tilde{c}_{3}}
$$

Choice of Action

O Our choice of action for these calculations is
Domain-Wall Valence fermions on dynamical HISQ ensembles

There are several reasons for this choice
it is not my fond familiarity with Mixed-Action calculations :)

Choice of Action

- Our choice of action for these calculations is

Domain-Wall Valence fermions on dynamical HISQ ensembles

- control of chiral symmetry is important - renormalization
- calculations at/near physical pion mass
- multiple volumes to perform volume study
- multiple lattice spacings for continuum limit
- publicly available configurations

Choice of Action

- The only choice of dynamical configurations which satisfy these criteria are the dynamical HISQ ensembles from MILC with $2+1+1$ dynamical flavors

a $[\mathrm{fm}]$	m_{l} / m_{s}	V	$m_{\pi} L$	m_{π} $[\mathrm{MeV}]$
0.15	$1 / 5$	$16^{3} \times 48$	3.78	306
0.15	$1 / 10$	$24^{3} \times 48$	3.99	217
0.15	$1 / 27$	$32^{3} \times 48$	3.30	135
0.12	$1 / 5$	$24^{3} \times 64$	4.54	309
0.12	$1 / 10$	$24^{3} \times 64$	3.22	221
0.12	$1 / 10$	$32^{3} \times 64$	4.29	221
0.12	$1 / 10$	$40^{3} \times 64$	5.36	221
0.12	$1 / 27$	$48^{3} \times 64$	3.88	135
0.09	$1 / 5$	$32^{3} \times 96$	4.50	314
0.09	$1 / 10$	$48^{3} \times 96$	4.71	221
0.09	$1 / 27$	$64^{3} \times 96$	3.66	130

Choice of Action

O To control the chiral symmetry and greatly simplify the operator renormalization, Domain-Wall valence fermions are very suitable choice

Choice of Action

- To control the chiral symmetry and greatly simplify the operator renormalization, Domain-Wall valence fermions are very suitable choice
- Consider the contribution from the "clover operator"
$\mathcal{O}_{0}=-\frac{1}{2} \bar{q} \sigma_{\mu \nu} G^{\mu \nu} q$
- one may first think clover-Wilson fermions are perfect, as a simple re-tuning of the clover-coefficient is all that is needed
- changing the clover-coefficient will change the nucleon mass with an additive mix of both the physical shift of interest and a discretization correction to the quark mass
- disentangling the physical shift to the nucleon mass from this operator would involve a complicated tuning problem involving non-perturbative renormalization for each choice of clover-coefficient to subtract unphysical discretization effects

Choice of Action

© To control the chiral symmetry and greatly simplify the operator renormalization, Domain-Wall valence fermions are very suitable choice

- There are other simplifications which occur with DWF involving both the chiral symmetry properties and renormalization

Outlook

- By exploiting symmetries, we can study the modification of the nucleon spectrum in the presence of CP conserving operators which will then determine the values of the CP-violating $\pi-\mathrm{N}$ couplings which arise from the quark chromo-EDM operators
O The long-range CPV pion-nucleon couplings could allow for a direct connection with fundamental coefficients in dimension-6 quark operators and real nuclear physics, ${ }^{225} \mathrm{Ra}$
- We hope to have initial results this year

Chris Bouchard, Chris Monahan, Emanuele Mereghetti, Kostas Orginos, AWL, ...

Outlook

O By exploiting symmetries, we can study the modification of the nucleon spectrum in the presence of CP conserving operators which will then determine the values of the CP-violating $\pi-\mathrm{N}$ couplings which arise from the quark chromo-EDM operators
O The long-range CPV pion-nucleon couplings could allow for a direct connection with fundamental coefficients in dimension-6 quark operators and real nuclear physics, ${ }^{225} \mathrm{Ra}$

- We hope to have initial results this year

Chris Bouchard, Chris Monahan, Emanuele Mereghetti, Kostas Orginos, AWL, ...

Thank You!

