Parity-Violating and Parity-Conserving Asymmetries in ep and eN Scattering in the Qweak Experiment

Wouter Deconinck

September 29, 2017
Electroweak Box Workshop, Amherst Center for Fundamental Interactions
Parity-Violating Asymmetries are Typically Small

Asymmetry between $+$ and $-$ incoming electron helicity

$$A_{PV} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \quad \text{with} \quad \sigma = \left| \begin{array}{c} e \quad e' \quad \gamma \\ q \quad q' \\ e \quad e' \quad Z \\ q \quad q' \end{array} \right| + \ldots$$

Interference of photon and weak boson exchange

$$M^{EM} \propto \frac{1}{Q^2} \quad M^{NC} \propto \frac{1}{M_Z^2 + Q^2}$$

$$A_{PV} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \propto \frac{\mathcal{M}^{NC}_{PV}}{\mathcal{M}^{EM}} \propto \frac{Q^2}{M_Z^2} \propto G_F Q^2 \approx \mathcal{O}(\text{ppm, ppb}) \quad \text{when} \quad Q^2 \ll M_Z^2$$
Parity-Violating Asymmetry to Access Electroweak Parameters

Electroweak Box

The Qweak Experiment
Strategy to Measure Parts-Per-Billion: Integration

Event or counting mode

- Each event individually detected, digitized and read-out
- Selection or rejection possible based on event characteristics
- 100 ns pulse separation limits rate to 10 MHz per detector segment; at least 1 day for 1 ppm precision

Integrating or current mode

- Very high event rates possible, as long as detectors are linear
- But no rejection of background events possible after the fact
- Q_{Weak} segment rates 800 MHz; MOLLER segment rates up to 2.5 GHz; P2 up to 0.5 THz
Parity-Violating Asymmetry to Access Electroweak Parameters

Electroweak measurements with protons (elastic scattering)

\[A_{PV}(p) = \frac{-G_F Q^2}{4\pi\alpha\sqrt{2}} \left[\frac{\epsilon G_E G_Z + \tau G_M G_Z^* - (1 - 4\sin^2\theta_W)\epsilon' G_M G_A^*}{\epsilon(G_E)^2 + \tau(G_M)^2} \right] \]

In the forward elastic limit \(Q^2 \rightarrow 0, \theta \rightarrow 0 \) (plane wave):

\[A_{PV}(p) \xrightarrow{Q^2\rightarrow0} -\frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \left[Q_W^p + Q^2 \cdot B(Q^2) \right] \propto Q_W^p \text{ when } Q^2 \text{ small} \]

Precision electroweak Standard Model test of \(\sin^2\theta_W \):

\[A_{PV}(p) \propto -1 + 4\sin^2\theta_W \]
Determination of the Weak Charge of the Proton

Pushing the envelope of intensity (more detected electrons)
- Higher beam current (180 µA versus usually < 100 µA)
- Longer cryo-target (35 cm versus 20 cm, 2.5 kW in 20 K LH2)
- Higher event rates up to 800 MHz (integrating mode)
- Typical luminosity of $1.7 \times 10^{39} \text{ cm}^{-2} \text{s}^{-1}$, $\int \mathcal{L} dt = 1 \text{ ab}^{-1}$

Pushing the envelope of precision (better measurements)
- Electron beam polarimetry precision of 1% at 1 GeV
- Helicity-correlated asymmetries at ppb level (beam position at nm level)
- Determination of Q^2 since $A_{PV} \propto Q^2$
- Isolate elastic scattering from background processes (f_i, A_i)
Determination of the Weak Charge of the Proton

1 The Qweak Apparatus, NIM A 781, 105 (2015)
Determination of the Weak Charge of the Proton

Determination of the Weak Charge of the Proton

\[1 \text{ The Qweak Apparatus, NIM A 781, 105 (2015)}\]
Determination of the Weak Charge of the Proton

Azimuthal array of Čerenkov detector

- 8 fused silica radiators, 2 m long × 18 cm × 1.25 cm
- Pb preradiator tiles to suppress low-energy/neutral yield
- 5 inch PMTs with gain of 2000, low dark current
- 800 MHz electron rate per bar, defines counting noise
Determination of the Weak Charge of the Proton

First experiment with direct access to proton’s weak charge

- Experiment collected data between 2010 and 2012 with toroidal spectrometer and integrating quartz detectors
- Preliminary results were published in 2013 based on commissioning data\(^1\) (4% compared to the independent full data set)

Long awaited final results are now here

- Unblinding on March 31, 2017
- Release of unblinded result at PANIC’17 in Beijing:
 - Sunday September 3, 2017, at PANIC in plenary session
 - Friday September 8, 2017, at Jefferson Lab
- Publication to be submitted in October 2017

\(^1\) First Determination of the Weak Charge of the Proton, Phys. Rev. Lett. 111, 141803 (2013)
Determination of the Weak Charge of the Proton

Background treatment in integrating experiments

- Measured asymmetry A_{msr} corrected for all background contributions
 - with their own parity-violating asymmetry A_i (ppm-level)
 - and their dilution in the measured asymmetry f_i (%-level)

$$A_{PV} = R_{total} \frac{A_{msr}}{P} - \sum f_i A_i$$

Unprecedented precision comes with inevitable surprises

- Discovered qualitatively new “beamline background”
 - Generated by scattering of helicity-dependent beam halo on clean-up collimator downstream of target and into detector acceptance
- Discovered qualitatively new “rescattering bias”
 - Spin precession of scattered electrons in spectrometer, followed by nuclear transverse spin azimuthal asymmetry when scattering in lead pre-radiators
Determination of the Weak Charge of the Proton

All uncertainties in ppb

<table>
<thead>
<tr>
<th></th>
<th>Run 1</th>
<th>Run 2</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge Normalization: A_{BCM}</td>
<td>5.1</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>Beamline Background: A_{BB}</td>
<td>5.1</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Beam Asymmetries: A_{beam}</td>
<td>4.7</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Rescattering bias: A_{bias}</td>
<td>3.4</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>Beam Polarization: P</td>
<td>2.2</td>
<td>(1.2)</td>
<td></td>
</tr>
<tr>
<td>Al target windows: A_{b1}</td>
<td>(1.9)</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Kinematics: R_{Q^2}</td>
<td>(1.2)</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Total of others < 5%, incl ()</td>
<td>3.4</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>10.1</td>
<td>5.6</td>
<td>5.8</td>
</tr>
<tr>
<td>Total statistical uncertainty</td>
<td>15.0</td>
<td>8.3</td>
<td>7.3</td>
</tr>
<tr>
<td>Total combined uncertainty</td>
<td>18.0</td>
<td>10.0</td>
<td>9.3 (p = 86%)</td>
</tr>
</tbody>
</table>

$A_{PV}(4\%) = -279 \pm 31(\text{syst}) \pm 35(\text{stat}) = -279 \pm 47(\text{total})$

$A_{PV}(\text{full}) = -226.5 \pm 5.8(\text{syst}) \pm 7.3(\text{stat}) = -226.5 \pm 9.3(\text{total})$
Q\textsubscript{Weak}: Largest Uncertainties in Precision Q\textsubscript{Weak} Result

<table>
<thead>
<tr>
<th>Uncertainties</th>
<th>Run 1 ((\delta(A_{PV}))</th>
<th>Run 2 ((\delta(A_{PV}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>All uncertainties in ppb</td>
<td>(\delta(A_{PV})) fraction</td>
<td>(\delta(A_{PV})) fraction</td>
</tr>
<tr>
<td>Charge Normalization: (A_{BCM})</td>
<td>5.1 25%</td>
<td>2.3 17%</td>
</tr>
<tr>
<td>Beamline Background: (A_{BB})</td>
<td>5.1 25%</td>
<td>1.2 5%</td>
</tr>
<tr>
<td>Beam Asymmetries: (A_{beam})</td>
<td>4.7 22%</td>
<td>1.2 5%</td>
</tr>
<tr>
<td>Rescattering bias: (A_{bias})</td>
<td>3.4 11%</td>
<td>3.4 37%</td>
</tr>
<tr>
<td>Beam Polarization: (P)</td>
<td>2.2 5%</td>
<td>< 5%</td>
</tr>
<tr>
<td>Al target windows: (A_{b1})</td>
<td>< 5%</td>
<td>1.9 12%</td>
</tr>
<tr>
<td>Kinematics: (R_{Q^2})</td>
<td>< 5%</td>
<td>1.3 5%</td>
</tr>
<tr>
<td>Total of others</td>
<td>3.4 11%</td>
<td>2.5 20%</td>
</tr>
<tr>
<td>Combined in quadrature</td>
<td>10.1</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Intercept of A_{PV} at $Q^2 \rightarrow 0$ gives weak charge ($Q^2 = 0.025 \text{ GeV}^2$)

$$
\overline{A}_{PV} = \frac{A_{PV}}{A_0} = Q_p^W + Q^2 \cdot B(Q^2, \theta = 0) \quad \text{with} \quad A_0 = -\frac{G_F Q^2}{4\pi\alpha\sqrt{2}}
$$

Global fit1 of all parity-violating electron scattering with 4% data2

- Fit of parity-violating asymmetry data on H, D, 4He, $Q^2 < 0.63 \text{ GeV}^2$
- Free parameters are C_{1u}, C_{1d}, strange charge radius ρ_s and magnetic moment μ_s ($G^s_{E,M} \propto G_D$), and isovector axial form factor G^Z_A,1,$^T=1$
 - $Q^p_W(SM) = 0.0710 \pm 0.0007$ (theoretical expectation)
 - $Q^p_W(PVES) = 0.064 \pm 0.012$ (global fit of 4% data2)
 - After combination with atomic parity-violation on Cs:
 - $C_{1u} = -0.1835 \pm 0.0054$
 - $C_{1d} = 0.3355 \pm 0.0050$

Determination of the Weak Vector Charge of the Proton

New global fit of all parity-violating electron scattering with full data set

- Fit of parity-violating asymmetry data on H, D, 4He, $Q^2 < 0.63$ GeV2
- Free parameters were C_{1u}, C_{1d}, strange charge radius ρ_s and magnetic moment μ_s ($G^s_E, M \propto G_D$), and isovector axial form factor $G^{Z, T=1}_A$

\[Q^p_W(PVES)) = 0.0719 \pm 0.0045 \]
\[\sin^2 \theta_W = 0.2382 \pm 0.0011 \]
\[\rho_s = 0.19 \pm 0.11 \]
\[\mu_s = -0.18 \pm 0.15 \]
\[G^{Z, T=1}_A = -0.67 \pm 0.33 \]

- After combination with atomic parity-violation on Cs:
 - $C_{1u} = -0.1874 \pm 0.0022$
 - $C_{1d} = 0.3389 \pm 0.0025$
Determination of the Weak Vector Charge of the Proton

Data Projected to the Forward-Angle Limit

\[A_{ep} / A_0 = Q_W^p + Q^2 B(Q^2, \theta = 0) \]

- **Qweak 2017**
- **Qweak 2013**
- **HAPPEX**
- **SAMPLE**
- **PVA4**
- **G0**
- **SM (prediction)**

\[Q^2 [\text{GeV/c}^2] \]
Determination of the Weak Vector Charge of the Proton

Electroweak Box

The Qweak Experiment
Determination of the Weak Vector Charge of the Proton

Using lattice QCD in the extraction

- It is possible to add the lattice strangeness form factor to the global fit.
- \(Q^p_W(LQCD) = 0.0684 \pm 0.0039 \)

\[Q^2 (\text{GeV}^2) \]

lattice QCD (this work, \(m_\pi = 317 \text{ MeV} \))

lattice QCD (this work, physical point)

lattice QCD [17]

connected LQCD + octet \(\mu \) from expt. [16]

...same, with quenched lattice QCD [29]

finite-range-regularized chiral model [30]

light-front model + deep inelastic scattering data [31]

perturbative chiral quark model [32]

dispersion analysis [33]

parity-violating elastic scattering [34]

\(^1\) J. Green et al, Phys. Rev. D92, 031501 (2015)
Electroweak Radiative Corrections

Procedure per Erler et al.1

\[Q^p_W = (\rho_{NC} + \Delta_e)(1 - 4 \sin^2 \theta_W(0) + \Delta'_e) + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z} \]

<table>
<thead>
<tr>
<th>Correction to (Q^p_W)</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \sin \theta_W(M_Z))</td>
<td>±0.0006</td>
</tr>
<tr>
<td>(\Box_{\gamma Z}(6.4 \pm 0.6)%)</td>
<td>±0.00044</td>
</tr>
<tr>
<td>(\Delta \sin \theta_W(Q))had</td>
<td>±0.0003</td>
</tr>
<tr>
<td>(\Box_{WW}, \Box_{ZZ}) (pQCD)</td>
<td>±0.0001</td>
</tr>
<tr>
<td>Charge symmetry</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>±0.0008</td>
</tr>
</tbody>
</table>

Electroweak Radiative Corrections

Discussion of $\Box_{\gamma Z}$

- We use the most recent available treatment by Hall et al.\(^1\) (which is the same treatment we used in the publication of the commissioning run in 2013)
- $\Box_{\gamma Z}^V = (5.4 \pm 0.4) \times 10^{-3}$ using \(^1\)
- $\Box_{\gamma Z}^A = (-0.7 \pm 0.2) \times 10^{-3}$ using \(^2\)
- Q^2 dependence using \(^3\)

What if?

- If we use an uncertainty on $\Box_{\gamma Z}$ of ± 0.0020 as per Gorchtein et al.\(^1\)
- $Q^P_W(PVES)$ changes from 0.0719 ± 0.0045 to 0.0716 ± 0.0048

\(^1\)Hall, Blunden, Melnitchouk, Thomas, Young, Phys. Lett. B753 (2016) 221-226
\(^2\)Blunden, Melnitchouk, Thomas, Phys. Rev. Lett. 107, 081801 (2011)
Sensitivity to New Physics

Effective four-point interactions of some higher mass scale\(^1\)

\[
\mathcal{L}_{e-q}^{PV} = -\frac{G_F}{\sqrt{2}} \bar{e} \gamma_\mu \gamma_5 e \sum_q C_{1q} \bar{q} \gamma^\mu q + \frac{g^2}{\Lambda^2} \bar{e} \gamma_\mu \gamma_5 e \sum_q h_q^V \bar{q} \gamma^\mu q
\]

Limits on new physics energy scale if uncertainty \(\Delta Q^p_W\)

\[
\frac{\Lambda}{g} = \frac{1}{2} \left(\sqrt{2} G_F \Delta Q^p_W \right)^{-1/2}
\]

Assuming that we have an arbitrary flavor dependence of the new physics:

\[
h^u_V = \cos \theta_h \quad h^d_V = \sin \theta_h
\]

Sensitivity to New Physics
Sensitivity to New Physics

Leptoquarks

- Impact explored in Erler, Kurylov, Ramsey-Musolf, Phys. Rev. D 68, 016006
- Some other data has since been released (HERA), which may affect the opportunities for the Q_{Weak} result to distinguish

Dark parity-violation

- Q_{Weak} result rules out some of the allowed region
Ancillary Measurements: Borne of Paranoia

Whatever could affect A_{PV} was measured and corrected for

- Each background has asymmetry A_i and dilution f_i
- Non-hydrogen scattering: aluminum alloy of target windows
- Non-elastic contributions besides elastic ep: $N \rightarrow \Delta$, Møller
- Non-longitudinal polarization: horizontal, vertical transverse
- Non-electron particles reaching detector: π production
- Particles not originating from target: blocked octants
- Particles not reaching main detectors: superelastic region,

Priorities driven by weak charge needs until recently

- First: corrections on $A_{PV}(p)$ due to A_{PV}(Al alloy), B_n(H + Al alloy)
- Then: extract B_n(H), turn Al alloy into 27Al for $A_{PV}(^{27}$Al)
- Then: corrections due to B_n(Al alloy), extract $B_n(^{27}$Al)
Ancillary Measurements: Transverse Asymmetry

Transverse single spin asymmetries

- Some transverse polarization, slightly broken azimuthal symmetry
- Measure with transversely polarized beam (H or V)
- Parity-conserving T-odd transverse asymmetry of order ppm

$$B_n = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} = \frac{2\Im(T^{1\gamma*} \cdot \text{Abs}T^{2\gamma})}{|T^{1\gamma}|^2} \approx \mathcal{O}(\frac{m}{E}) \approx \text{ppm}$$

- $T^{1\gamma}_{fi} = \mathcal{O}(\alpha_{em})$
- $T^{2\gamma}_{fi} = \mathcal{O}(\alpha_{em}^2)$
- $+ \ldots$
Ancillary Measurements: Transverse Asymmetry

Azimuthal asymmetries

\[
A_T(\phi) = \frac{N^\uparrow(\phi) - N^\downarrow(\phi)}{N^\uparrow(\phi) + N^\downarrow(\phi)} = B_n S \sin(\phi - \phi_S) = B_n (P_V \cos \phi + P_H \sin \phi)
\]

with \(P_V = S \sin \phi_S \) and \(P_H = S \cos \phi_S \)

Available transverse single spin asymmetries

- Elastic \(\bar{e}p \) in H, C, Al at \(E = 1.165 \) GeV
- Inelastic \(\bar{e}p \rightarrow \Delta \) in H, C, Al at \(E = 0.877 \) GeV and 1.165 GeV
- Elastic \(\bar{e}e \) in H at \(E = 0.877 \) GeV
- Deep inelastic \(\bar{e}p \) in H at \(W = 2.5 \) GeV
- Pion photoproduction in H at \(E = 3.3 \) GeV
Ancillary Measurements: Transverse Asymmetry on H

Two hours of data taking in \(H \): \(A_T(\text{oct}) = A \sin \phi \)

![Vertical Transverse Asymmetry](image)

\(\chi^2 \) / ndf	5.19 / 5
Prob	0.39
\(A_{\text{reg}} \)	-4.61 ± 0.20

Two hours of data taking in \(V \): \(A_T(\text{oct}) = A \cos \phi \)

![Horizontal Transverse Asymmetry](image)

\(\chi^2 \) / ndf	4.87 / 5
Prob	0.43
\(A_{\text{reg}} \)	-4.76 ± 0.20

Electroweak Box

The Qweak Experiment
Ancillary Measurements: Transverse Asymmetry on H

Cancellation with slow helicity reversal for H

Cancellation with slow helicity reversal for H
Ancillary Measurements: Transverse Asymmetry on H

- 90 degrees phase difference between H and V as expected
- Not corrected for polarization, backgrounds, acceptance, ...
Ancillary Measurements: Transverse Asymmetry on H

- Background corrections (as for main experiment):

$$B_n = R_{total} \frac{A}{P} - \sum f_i A_i$$

- Measured corrections f_i and A_i for aluminum windows, $N \rightarrow \Delta$

- R_{total} includes radiative corrections, acceptance averaging, Q^2 variation with ϕ in each octant

- Most precise transverse asymmetry in ep in hydrogen (50 hours of data):
 $$B_n = -5.35 \pm 0.07\text{(stat)} \pm 0.15\text{(syst)} \text{ ppm}$$

- $\langle E \rangle = 1.155 \pm 0.003$ GeV, $\langle \theta \rangle = 7.9 \pm 0.3$ degrees
Ancillary Measurements: Transverse Asymmetry on H

Theoretical models:

Ancillary Measurements: Transverse Asymmetry on Al, C

Q_{Weak} wasn’t made for this

- Large energy acceptance of spectrometer (150 MeV at 1.165 GeV)
- Nuclei are hardly ideal with low-lying levels

$B_n \approx -11$ ppm in elastic scattering off C

- Analysis complete but no result released yet by collaboration
- Dissertation of Martin McHugh (GWU) is available on UMI and consistent with PREX at 1σ
- Target is 99% 12C, no significant contaminations
- Correction for contribution from quasi-elastic scattering
- No attempts at separation of nuclear excited states and GDR from elastic scattering
- $B_n(C)$ is a quantity that does not correspond to a purely elastic state
$B_n \approx [-11, -14]$ ppm in elastic scattering off 27Al

- Some figures released by collaboration, no numbers, analysis nearing completion
- Alloy is a mixture with up to 10% other elements
- Attempts to treat quasi-elastic nuclear excited states and GDR more appropriately
- $B_n(^{27}\text{Al})$ will be interpretable as referring to a purely elastic state
- Results to be shown at Fall 2017 DNP meeting by Kurtis Bartlett (W&M)
Ancillary Measurements: Transverse Asymmetry on Al

Aluminum azimuthal asymmetry is non-zero (uncorrected data)

- Aluminum alloy with $\approx 10\%$ contaminations
- Corrections needed for quasielastic, $N \rightarrow \Delta$, nuclear excited states
Ancillary Measurements: Transverse Asymmetry on Al

Contaminants

- Working with Chuck Horowitz on distorted wave σ and A_{PV}
- Implementation into Q_{Weak} Monte Carlo simulations to determine their contributions

<table>
<thead>
<tr>
<th>Element</th>
<th>% by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>88.70</td>
</tr>
<tr>
<td>Zn</td>
<td>6.3</td>
</tr>
<tr>
<td>Mg</td>
<td>2.7</td>
</tr>
<tr>
<td>Cu</td>
<td>1.8</td>
</tr>
<tr>
<td>Cr</td>
<td>0.21</td>
</tr>
<tr>
<td>Fe</td>
<td>0.12</td>
</tr>
<tr>
<td>Si</td>
<td>0.10</td>
</tr>
<tr>
<td>Total</td>
<td>99.93</td>
</tr>
</tbody>
</table>
Ancillary Measurements: Transverse Asymmetry on Al

Quasi-elastic scattering

- Free nucleon approximation and some heuristics related to isoscalar/isovector impact on sign of asymmetry
- However, free nucleon approximation may not be sufficient per E. Hadjimichael, G. I. Poulis, T. W. Donnelly, Phys. Rev. C 45, 2666 (1992)
- More detailed quasi-elastic implementation per Horowitz, Phys. Rev. C 47, 826 (1992), which his grad student Zidu Lin has adapted to ^{27}Al
Ancillary Measurements: Transverse Asymmetry on Al

Nuclear excited states

- Fitting nuclear excited state form factors using MIT Bates data
- Implementation into Q_{Weak} Monte Carlo simulations to determine their contributions
Ancillary Measurements: Transverse Asymmetry on C, Al

Projected uncertainties for B_n for C and Al

- HAPPEX, PREX: Abrahamyan et al., PRL 109, 192501 (2012)
Ancillary Measurements: Transverse Asymmetry in $N \rightarrow \Delta$

Access to the $\gamma \ast \Delta \Delta$ form factor

- Large asymmetries in the forward region
- Several possible intermediate states N, Δ
Ancillary Measurements: Transverse Asymmetry in $\mathcal{N} \rightarrow \Delta$

Before any background corrections

![Graph showing asymmetry vs octant before background corrections]

- Large radiative tail from elastic scattering as dilution with small asymmetry
- $B_n(\mathcal{N} \rightarrow \Delta) = 43 \pm 16$ at $\langle \theta \rangle = 8.3$ degrees
- Nuruzzaman, CIPANP2015, arXiv:1510.00449 [nucl-ex]

After background corrections

- $\chi^2 / \text{ndf} = 8.8 / 7$, $\text{Prob} = 0.3$
 - $\varepsilon_{\text{reg}} = 5.3 \pm 0.5$
- $\chi^2 / \text{ndf} = 6.1 / 7$, $\text{Prob} = 0.5$
 - $\varepsilon_{\text{reg}} = 4.4 \pm 0.8$
Ancillary Measurements: Transverse Asymmetry in $N \rightarrow \Delta$

- Includes N, and $\Delta(1232)$
Ancillary Measurements: Transverse Asymmetry in $N \rightarrow \Delta$

- Includes N, $\Delta(1232)$, $S11(1535)$, and $D13(1520)$
Ancillary Measurements: Transverse Asymmetry in Møller

Summary

Determination of the Weak Charge of the Proton

- Most precise parity-violating asymmetry measurement:
 \[A_{PV} = -226.5 \pm 7.3\text{(stat)} \pm 5.8\text{(syst)} \text{ ppb at } \langle Q^2 \rangle = 0.0249 \text{ GeV}^2 \]
- Weak charge \(Q^p_W(PVES) = 0.0719 \pm 0.0045 \) in excellent agreement with \(Q^p_W(SM) = 0.0708 \pm 0.0003 \)
- Amplitudes above \(8 \cdot 10^{-3} \cdot G_F \) ruled out
- Heavy new physics with \(\Lambda/g < 7.5 \text{ TeV} \) ruled out
- Triad of high precision low energy weak charge measurements now complete
Summary

Many ancillary measurements for which data is available:

A_{PV} helicity asymmetries:
- Elastic ^{27}Al
- $N \rightarrow \Delta (E \text{ of } 1.16 \text{ GeV, 0.877 GeV})$
- Near $W = 2.5 \text{ GeV}$ (for $\Box_{\gamma Z}$)
- Pion photoproduction ($E \text{ of } 3.3 \text{ GeV}$)

B_n transverse asymmetries:
- Elastic ep, $^{27}\text{Al, C}$
- $N \rightarrow \Delta$
- Near $W = 2.5 \text{ GeV}$
- Pion photoproduction ($E \text{ of } 3.3 \text{ GeV}$)
- Møller
Topics for Discussion

Prioritization of ancillary analysis

- Currently in progress (or preliminary results):
 - B_n for ep
 - A_{PV} for $N \rightarrow \Delta$
 - A_{PV} for 27Al
 - B_n for 27Al, C

Ask a theorist

- Preference for g^2/Λ^2 over $g^2/4\Lambda^2$?
- Limits on leptoquarks?
Additional Material
Uncertainties

Parity-Violating and Parity-Conserving Nuclear Asymmetries
 Tracking Detectors
 Beam Polarimetry
 Helicity-Correlated Beam Properties
 Data Quality

Precision Polarimetry
 Atomic Hydrogen Polarimetry

Radiative Corrections
The Q_{Weak} Experiment: Kinematics in Event Mode

Reasons for a tracking system?

- Determine Q^2, note: $A_{\text{meas}} \propto Q^2 \cdot (Q_P^W + Q^2 \cdot B(Q^2))$
- Main detector light output and Q^2 position dependence
- Contributions from inelastic background events

Instrumentation of only two octants

- Horizontal drift chambers for front region (Va Tech)
- Vertical drift chambers for back region (W&M)
- Rotation allows measurements in all eight octants

Track reconstruction

- Straight tracks reconstructed in front and back regions
- Front and back partial tracks bridged through magnetic field
Requirements on beam polarimetry

- Largest experimental uncertainty in Q_{Weak} experiment
- Systematic uncertainty of 1% (on absolute measurements)

Upgrade existing Møller polarimeter ($\vec{e} + \vec{e} \rightarrow e + e$)

- Scattering off atomic electrons in magnetized iron foil
- Limited to separate, low current runs ($I \approx 1 \mu A$)

Construction new Compton polarimeter ($\vec{e} + \vec{\gamma} \rightarrow e + \gamma$)

- Compton scattering of electrons on polarized laser beam
- Continuous, non-destructive, high precision measurements
The Q\text{Weak} Experiment: Improved Beam Polarimetry

Compton polarimeter

- **Beam**: 150 μA at 1.165 GeV
- **Chicane**: interaction region 57 cm below straight beam line
- **Laser system**: 532 nm green laser
 - 10 W CW laser with low-gain cavity
- **Photons**: PbWO$_4$ scintillator in integrating mode
- **Electrons**: Diamond strips with 200 μm pitch
Data Quality: Slow Helicity Reversal

\(\lambda/2\)-plate and Wien filter changes

- Insertable \(\lambda/2\)-plate (IHWP) in injector allows ‘analog’ flipping helicity frequently
- Wien filter: another way of flipping helicity (several weeks)
- Each ‘slug’ of 8 hours consists of same helicity conditions
Helicity-Correlated Beam Properties Are Understood

Measured asymmetry depends on beam position, angle, energy

- Well-known and expected effect for PVES experiments
- “Driven” beam to check sensitivities from “natural” jitter

Run 11781: Main Detector Barsum X-Sensitivities (ppm/mm) for Qweak Target: LH2, 164.7 uA, 4.0x4.0 mm

Electroweak Box

The Qweak Experiment
However, Some Beamline Background Correlations Remain

After regression, correlation with background detectors
- Luminosity monitors & spare detector in super-elastic region
- Background asymmetries of up to 20 ppm (that’s huge!)
Beamline Background Correlations Remain

Hard work by grad students: now understood, under control

- Partially cancels with slow helicity reversal (half-wave plate)
- Likely caused by large asymmetry in small beam halo or tails
- Scattering off the beamline and/or “tungsten plug”

Qualitatively new background for PVES experiments at JLab

- Second regression using asymmetry in background detectors
- Measurements with blocked octants to determine dilution factor $(f_{b_2}^{MD} = 0.19\%)$
Data Quality: Understanding the Asymmetry Width

Asymmetry width

- 240 Hz helicity quartets (+ − − + or − + + −)
- Uncertainty = \(\text{RMS}/\sqrt{N} \)
- 200 ppm in 4 milliseconds
- < 1 ppm in 5 minutes

Measurement

Battery width

- Pure counting statistics ≈ 200 ppm
- + detector resolution ≈ 90 ppm
- + current monitor ≈ 50 ppm
- + target boiling ≈ 57 ppm
- = observed width ≈ 233 ppm

Asymmetry width
Data Quality: Helicity-Correlated Beam Properties

Natural beam motion
- Measured asymmetry correlated with beam position and angles
- Linear regression:
 \[A_c = \sum_i \frac{\partial A}{\partial x_i} \Delta x_i \]
 \[i = x, y, x', y', E \]
Data Quality: Helicity-Correlated Beam Properties

Natural beam motion

- Measured asymmetry correlated with beam position and angles
- Linear regression:
 \[A_c = \sum_i \frac{\partial A}{\partial x_i} \Delta x_i \]
 \[i = x, y, x', y', E \]

Driven beam motion

- Deliberate motion
Excellent agreement between natural and driven beam motion

- Figure includes about 50% of total dataset for Q_{Weak} experiment
- No other corrections applied to this data
Sensitivity to New Physics

Lower bound on new physics (95% CL)

- Constraints from
 - Atomic PV: \(\Lambda g > 0.4 \text{ TeV} \)
 - PV electron scattering: \(\Lambda g > 0.9 \text{ TeV} \)
 - Projection \(Q_{\text{Weak}} \): \(\Lambda > 2 \text{ TeV} \)
 - 4% precision
Lower bound on new physics (95% CL)

Constraints from

- Atomic PV: \(\frac{\Lambda}{g} > 0.4 \text{ TeV} \)
- PV electron scattering: \(\frac{\Lambda}{g} > 0.9 \text{ TeV} \)
Sensitivity to New Physics

Lower bound on new physics (95% CL)

Constraints from
- Atomic PV: \(\frac{\Lambda}{g} > 0.4 \text{ TeV} \)
- PV electron scattering: \(\frac{\Lambda}{g} > 0.9 \text{ TeV} \)

Projection \(Q_{\text{Weak}} \)
- \(\frac{\Lambda}{g} > 2 \text{ TeV} \)
- 4\% precision
Sensitivity to New Physics

Different experiments sensitive to different extensions

JLab Q_{weak}

$q^p_w = 0.0716$

Experiment
SUSY Loops
E$_6$ Z’
RPV SUSY
Leptoquarks

SLAC E158 (complete)

$-Q^e_w = 0.0449$

Experiment

In the diagram:

- **RPC SUSY**
- **Generic Z’**
- **RPV SUSY**
- **Leptoquarks**

The Qweak Experiment
Parity-Violating Electron Scattering: Quark Couplings

Weak vector charge uud

$$Q^p_W = -2(2C_{1u} + C_{1d})$$

Early experiments

- SLAC and APV
Parity-Violating Electron Scattering: Quark Couplings

Weak vector charge uud

$$ Q_W^p = -2(2C_{1u} + C_{1d}) $$

Early experiments
- SLAC and APV

Electron scattering
- HAPPEX, G0
- PVA4/Mainz
- SAMPLE/Bates
Parity-Violating Electron Scattering: Quark Couplings

Weak vector charge uud

$$Q^P_W = -2(2C_{1u} + C_{1d})$$

Early experiments
- SLAC and APV

Electron scattering
- HAPPEX, G0
- PVA4/Mainz
- SAMPLE/Bates

Q_{Weak} experiment
Precision Electroweak Experiments: JLab 12 GeV

MOLLER Experiment

<table>
<thead>
<tr>
<th>Source</th>
<th>ΔA_{PV}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mom. transfer Q^2</td>
<td>0.5%</td>
</tr>
<tr>
<td>Beam polarization</td>
<td>0.4%</td>
</tr>
<tr>
<td>2nd order beam</td>
<td>0.4%</td>
</tr>
<tr>
<td>Inelastic ep</td>
<td>0.4%</td>
</tr>
<tr>
<td>Elastic ep</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

SoLID PV-DIS Experiment

<table>
<thead>
<tr>
<th>Source</th>
<th>ΔA_{PV}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam polarization</td>
<td>0.4%</td>
</tr>
<tr>
<td>Rad. corrections</td>
<td>0.3%</td>
</tr>
<tr>
<td>Mom. transfer Q^2</td>
<td>0.5%</td>
</tr>
<tr>
<td>Inelastic ep</td>
<td>0.2%</td>
</tr>
<tr>
<td>Statistics</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

Precision beam polarimetry is crucial to these experiments.
Precision Electroweak Experiments: Polarimetry

Compton Polarimetry
- $\vec{e}\vec{\gamma} \rightarrow e\gamma$ (polarized laser)
- Detection e and/or γ
- Only when beam energy above few hundred MeV
- High photon polarization but low asymmetry
- Total systematics $\sim 1\%$
 - laser polarization
 - detector linearity

Møller Polarimetry
- $\vec{e}\vec{e} \rightarrow ee$ (magnetized Fe)
- Low current because temperature induces demagnetization
- High asymmetry but low target polarization
- Levchuk effect: scattering off internal shell electrons
- Intermittent measurements at different beam conditions
- Total systematics $\sim 1\%$
Atomic Hydrogen Polarimetry

New polarimetry concept\(^1\)
- 300 mK cold atomic H
- 8 T solenoid trap
- \(3 \cdot 10^{16}\) atoms/cm\(^2\)
- \(3 \cdot 10^{15}-17\) atoms/cm\(^3\)
- 100% polarization of e

Advantages
- High beam currents
- No Levchuk effect
- Non-invasive, continuous

Atomic Hydrogen Polarimetry: 100% Polarization of e

Hyperfine Splitting in Magnetic Field

- Energy splitting of $\Delta E = 2\mu B$:
 \[\uparrow / \downarrow = \exp(-\Delta E / kT) \approx 10^{-14} \]
- Low energy states with $|s_es_p\rangle$:
 \[|d\rangle = |\uparrow\uparrow\rangle \]
 \[|c\rangle = \cos \theta |\uparrow\downarrow\rangle + \sin \theta |\downarrow\uparrow\rangle \]
 \[|b\rangle = |\downarrow\downarrow\rangle \]
 \[|a\rangle = \cos \theta |\downarrow\uparrow\rangle - \sin \theta |\uparrow\downarrow\rangle \]
 with $\sin \theta \approx 0.00035$
- $P_e(\downarrow) \approx 1$ with only 10^5 dilution from $|\uparrow\downarrow\rangle$ in $|a\rangle$ at $B = 8$ T
- $P_p(\uparrow) \approx 0.06$ because 53% $|a\rangle$ and 47% $|b\rangle$}

Force $\vec{V}(-\vec{\mu} \cdot \vec{B})$ will pull $|a\rangle$ and $|b\rangle$ into field
Atomic Hydrogen Polarimetry: Expected Contaminations

Without beam
- Recombined molecular hydrogen suppressed by coating of cell with superfluid He, $\sim 10^{-5}$
- Residual gasses, can be measured with beam to $< 0.1\%$

With 100 μA beam
- 497 MHz RF depolarization for 200 GHz $|a\rangle \rightarrow |c\rangle$ transition, tuning of field to avoid resonances, uncertainty $\sim 2 \cdot 10^{-4}$
- Ion-electron contamination: builds up at 20%/s in beam region, cleaning with \vec{E} field of ~ 1 V/cm, uncertainty $\sim 10^{-5}$
Projected Systematic Uncertainties ΔP_e in Møller polarimetry

<table>
<thead>
<tr>
<th>Source</th>
<th>Fe-foil</th>
<th>Hydrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target polarization</td>
<td>0.63%</td>
<td>0.01%</td>
</tr>
<tr>
<td>Analyzing power</td>
<td>0.30%</td>
<td>0.10%</td>
</tr>
<tr>
<td>Levchuk effect</td>
<td>0.50%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Deadtime</td>
<td>0.30%</td>
<td>0.10%</td>
</tr>
<tr>
<td>Background</td>
<td>0.30%</td>
<td>0.10%</td>
</tr>
<tr>
<td>Other</td>
<td>0.30%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Unknown unknowns</td>
<td>0.00%</td>
<td>0.30% (?)</td>
</tr>
<tr>
<td>Total</td>
<td>1.0%</td>
<td>0.35%</td>
</tr>
</tbody>
</table>
P2 Experiment in Mainz: Weak Charge of the Proton

- "Q_{Weak} experiment" with improved statistical precision
- Dedicated 200 MeV accelerator MESA under construction
- Required precision of electron beam polarimetry < 0.5%
- Strong motivation for collaboration on a short timescale (installation in 2017)
Parity-Violating Electron Scattering: Running of Weak Mixing Angle

Running of $\sin^2 \theta_W$ ($Q_W^p = 1 - 4 \sin^2 \theta_W$)

- Higher order loop diagrams
- $\sin^2 \theta_W$ varies with Q^2

Electroweak Box
The Qweak Experiment
γZ Box Corrections near 1.16 GeV

In 2009, Gorchtein and Horowitz showed the vector hadronic contribution to be significant and energy dependent.

This soon led to more refined calculations with corrections of $\sim 8\%$ and error bars ranging from $\pm 1.1\%$ to $\pm 2.8\%$.

It will probably also spark a refit of the global PVES database used to constrain G_L^e, G_L^e, G_A.

PV Amplitude

<table>
<thead>
<tr>
<th>PV Amplitude</th>
<th>Authors</th>
<th>Correction* @ E=1.165 (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A^e_x V^p$</td>
<td>GH</td>
<td>0.0026±0.0026**</td>
</tr>
<tr>
<td>(vanishes as E→0)</td>
<td>SBMT</td>
<td>0.0047 ±0.0011 -0.0004</td>
</tr>
<tr>
<td>$A^p_x A^p$</td>
<td>RC</td>
<td>0.0057±0.0009</td>
</tr>
<tr>
<td>(finite as E→0)</td>
<td>GHR-M</td>
<td>0.0054±0.0020</td>
</tr>
<tr>
<td></td>
<td>MS (as updated by EKR-M)</td>
<td>0.0052±0.0005***</td>
</tr>
<tr>
<td></td>
<td>BMT</td>
<td>0.0037±0.0004</td>
</tr>
</tbody>
</table>

* Does not include a small contribution from the elastic.
** 5.7\%×Q_w^p(LO) = 0.0026. Q_w^p(LO) = 0.04532.
*** Included in Q_w^p. For reference, $Q_w^p = 0.0713(8)$.

Forthcoming axial results for Q_w^a have the potential to impact the interpretation of Cs APV.
γZ Box Corrections near 1.16 GeV

A Partial Bibliography

<table>
<thead>
<tr>
<th>PV Amplitude</th>
<th>Authors</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{XX}V_{XP}$ (vanishes as $E \to 0$)</td>
<td>GH</td>
<td>Gorchtein & Horowitz, PRL 102, 091806 (2009)</td>
</tr>
<tr>
<td>SBMT</td>
<td></td>
<td>Sibirtsev, Blunden, Melnitchouk, and Thomas, PRD 82, 013011 (2010)</td>
</tr>
<tr>
<td>RC</td>
<td></td>
<td>Rislow & Carlson, PRD 83, 113007 (2011)</td>
</tr>
<tr>
<td>GHR-M</td>
<td></td>
<td>Gorchtein, Horowitz, and Ramsey-Musolf, PRC 84, 015502 (2011)</td>
</tr>
<tr>
<td>$V_{XX}A_{XP}$ (finite as $E \to 0$)</td>
<td>MS</td>
<td>Marciano and Sirlin, PRD 27, 552 (1983), PRD 29, 75 (1984)</td>
</tr>
<tr>
<td>BMT</td>
<td></td>
<td>Blunden, Melnitchouk, and Thomas, PRL 107, 081801 (2011)</td>
</tr>
</tbody>
</table>
The *Q*Weak Experiment: Main Detector

Low noise electronics
- Event rate: 800 MHz/PMT
- Asymmetry of only 0.2 ppm
- Low noise electronics (TRIUMF)

I-V Preamplifier

18-bit 500 kHz sampling ADC
Reminder: weak vector charges
- Proton weak charge $Q_W^p \approx -0.072$
- Neutron weak charge $Q_W^n = -1$

Sources of neutron scattering
- Al target windows
- Secondary collimator events
- Small number of events, but huge false PV asymmetry
Atomic parity-violation on 133Cs

- Porsev, Beloy, Derevianko\(^1\): Updated calculations in many-body atomic theory
- Experiment: \(Q_W(^{133}\text{Cs}) = -73.25 \pm 0.29 \pm 0.20 \)
- Standard Model: \(Q_W(^{133}\text{Cs}) = -73.16 \pm 0.03 \)

NuTeV anomaly

- Reported 3 \(\sigma \) deviation from Standard Model
- Erler, Langacker: strange quark PDFs
- Londergan, Thomas\(^2\): charge symmetry violation, \(m_u \neq m_d \)
- Cloet, Bentz, Thomas\(^3\): in-medium modifications to PDFs, isovector EMC-type effect

\(^1\)Phys. Rev. Lett. 102 (2009) 181601
Isovector EMC effect\(^1\) affects NuTeV point\(^2\)

\[0.225 \leq \sin^2 \theta_{W} \leq 0.250 \]

\[Q \ (\text{GeV}) \]

\[0.001 \leq Q \leq 10000 \]

\[Q_{\text{weak}} \ [\text{JLab}] \]

\[\nu\text{-DIS} \]

\[Z\text{-pole} \]

\[CDF \]

\[D0 \]

\[\text{SLAC E158} \]

\[\text{APV(Cs)} \]

\[\text{Møller [JLab]} \]

\[\text{PV-DIS [JLab]} \]

\[Q_{\text{weak}} \ [\text{JLab}] \]

\[1^1 I. \ Cloët, \ W. \ Bentz, \ A. \ M. \ Thomas, \ Phys. \ Rev. \ Lett. \ 102, \ 252301 \ (2009) \]

\[2^2 W. \ Bentz, \ Phys. \ Lett. \ B693, \ 462-466 \ (2010) \]
Isovector EMC effect1 affects NuTeV point2

\begin{align*}
\sin^2 \theta_{\text{MS}} & \quad Q \ (\text{GeV}) \\
\end{align*}

\begin{itemize}
\item Standard Model
\item Completed Experiments
\item Future Experiments
\end{itemize}

1 I. Cloët, W. Bentz, A. M. Thomas, Phys. Rev. Lett. 102, 252301 (2009)

2 W. Bentz, Phys. Lett. B693, 462-466 (2010)