Parity-Violating and Parity-Conserving Asymmetries in ep and eN Scattering in the Qweak Experiment

Wouter Deconinck

September 29, 2017 Electroweak Box Workshop, Amherst Center for Fundamental Interactions



CHARTERED 1693

Supported by the National Science Foundation under Grant Nos. PHY-1405857, PHY-1714792.

## Parity-Violating Asymmetries are Typically Small

Asymmetry between  $+ \mbox{ and } - \mbox{ incoming electron helicity }$ 

$$A_{PV} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} \quad \text{with} \quad \sigma = \begin{vmatrix} e & e' \\ \hline \gamma \\ q & q' \end{vmatrix} + \begin{vmatrix} e & e' \\ \hline Z \\ \hline q & q' \end{vmatrix} + \dots \begin{vmatrix} 2 \\ \hline z \\ q & q' \end{vmatrix}$$

Interference of photon and weak boson exchange

-1

$$\mathcal{M}^{EM} \propto \frac{1}{Q^2} \qquad \mathcal{M}^{NC}_{PV} \propto \frac{1}{M_Z^2 + Q^2}$$

$$A_{PV} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \propto \frac{\mathcal{M}^{NC}_{PV}}{\mathcal{M}^{EM}} \propto \frac{Q^2}{M_Z^2} \propto G_F Q^2 \approx \mathcal{O}(\text{ppm, ppb}) \text{ when } Q^2 \ll M_Z^2$$

-1

#### Parity-Violating Asymmetry to Access Electroweak Parameters



Electroweak Box

## Strategy to Measure Parts-Per-Billion: Integration

#### Event or counting mode



- Each event individually detected, digitized and read-out
- Selection or rejection possible based on event characteristics
- 100 ns pulse separation limits rate to 10 MHz per detector segment; at least 1 day for 1 ppm precision

#### Integrating or current mode



- Very high event rates possible, as long as detectors are linear
- But no rejection of background events possible after the fact
- *Q<sub>Weak</sub>* segment rates 800 MHz; MOLLER segment rates up to 2.5 GHz; P2 up to 0.5 THz

Parity-Violating Asymmetry to Access Electroweak Parameters

Electroweak measurements with protons (elastic scattering)

$$\mathcal{A}_{PV}(p) = \frac{-G_F Q^2}{4\pi\alpha\sqrt{2}} \left[ \frac{\epsilon G_E G_E^Z + \tau G_M G_M^Z - (1 - 4\sin^2\theta_W)\epsilon' G_M G_A^Z}{\epsilon(G_E)^2 + \tau(G_M)^2} \right]$$

In the forward elastic limit  $Q^2 \rightarrow 0$ ,  $\theta \rightarrow 0$  (plane wave):

$$A_{PV}(p) \xrightarrow{Q^2 \to 0} \frac{-G_F Q^2}{4\pi \alpha \sqrt{2}} \left[ Q_W^p + Q^2 \cdot B(Q^2) \right] \propto Q_W^p \text{ when } Q^2 \text{ small}$$

Precision electroweak Standard Model test of  $\sin^2 \theta_W$ :

$$A_{PV}(p) \propto -1 + 4\sin^2\theta_W$$

#### Pushing the envelope of intensity (more detected electrons)

- Higher beam current (180  $\mu$ A versus usually < 100  $\mu$ A)
- Longer cryo-target (35 cm versus 20 cm, 2.5 kW in 20 K LH2)
- Higher event rates up to 800 MHz (integrating mode)
- Typical luminosity of  $1.7 imes 10^{39}\,{
  m cm^{-2}\,s^{-1}}$ ,  $\int {\cal L} dt = 1\,{
  m ab^{-1}}$

### Pushing the envelope of precision (better measurements)

- Electron beam polarimetry precision of 1% at 1 GeV
- Helicity-correlated asymmetries at ppb level (beam position at nm level)
- Determination of  $Q^2$  since  $A_{PV} \propto Q^2$
- Isolate elastic scattering from background processes  $(f_i, A_i)$



<sup>1</sup>The Qweak Apparatus, NIM A 781, 105 (2015)



<sup>1</sup>The Qweak Apparatus, NIM A 781, 105 (2015)

| Electroweak Box | E | lec | trov | vea | k | в | ox |
|-----------------|---|-----|------|-----|---|---|----|
|-----------------|---|-----|------|-----|---|---|----|



<sup>1</sup>The Qweak Apparatus, NIM A 781, 105 (2015)

Electroweak Box

## Azimuthal array of Čerenkov detector

- $\,$  8 fused silica radiators, 2 m long  $\times$  18 cm  $\times$  1.25 cm
- Pb preradiator tiles to suppress low-energy/neutral yield
- 5 inch PMTs with gain of 2000, low dark current
- 800 MHz electron rate per bar, defines counting noise





The Qweak Experiment

First experiment with direct access to proton's weak charge

- Experiment collected data between 2010 and 2012 with toroidal spectrometer and integrating quartz detectors
- Preliminary results were published in 2013 based on commissioning data<sup>1</sup> (4% compared to the independent full data set)

#### Long awaited final results are now here

- Unblinding on March 31, 2017
- Release of unblinded result at PANIC'17 in Beijing:
  - Sunday September 3, 2017, at PANIC in plenary session
  - Friday September 8, 2017, at Jefferson Lab
- Publication to be submitted in October 2017

<sup>1</sup>First Determination of the Weak Charge of the Proton, Phys. Rev. Lett. 111, 141803 (2013)

Electroweak Box

Background treatment in integrating experiments

- Measured asymmetry A<sub>msr</sub> corrected for all background contributions
  - with their own parity-violating asymmetry A<sub>i</sub> (ppm-level)
  - and their dilution in the measured asymmetry  $f_i$  (%-level)

$$A_{PV} = R_{total} \frac{\frac{A_{msr}}{P} - \sum f_i A_i}{1 - \sum f_i}$$

- Unprecedented precision comes with inevitable surprises
  - Discovered qualitatively new "beamline background"
    - Generated by scattering of helicity-dependent beam halo on clean-up collimator downstream of target and into detector acceptance
  - Discovered qualitatively new "rescattering bias"
    - Spin precession of scattered electrons in spectrometer, followed by nuclear transverse spin azimuthal asymmetry when scattering in lead pre-radiators

| All uncertainties in ppb               | Run 1 | Run 2 | Combined      |
|----------------------------------------|-------|-------|---------------|
| Charge Normalization: A <sub>BCM</sub> | 5.1   | 2.3   |               |
| Beamline Background: A <sub>BB</sub>   | 5.1   | 1.2   |               |
| Beam Asymmetries: A <sub>beam</sub>    | 4.7   | 1.2   | Note:         |
| Rescattering bias: A <sub>bias</sub>   | 3.4   | 3.4   | correlations  |
| Beam Polarization: P                   | 2.2   | (1.2) | between       |
| Al target windows: A <sub>b1</sub>     | (1.9) | 1.9   | factors       |
| Kinematics: $R_{Q^2}$                  | (1.2) | 1.3   |               |
| Total of others $< 5\%$ , incl ()      | 3.4   | 2.5   |               |
| Total systematic uncertainty           | 10.1  | 5.6   | 5.8           |
| Total statistical uncertainty          | 15.0  | 8.3   | 7.3           |
| Total combined uncertainty             | 18.0  | 10.0  | 9.3 (p = 86%) |

 $\begin{array}{lll} A_{PV}(4\%) &=& -279 \pm 31(\text{syst}) \pm 35(\text{stat}) = -279 \pm 47(\text{total}) \\ A_{PV}(\text{full}) &=& -226.5 \pm 5.8(\text{syst}) \pm 7.3(\text{stat}) = -226.5 \pm 9.3(\text{total}) \end{array}$ 

Electroweak Box

## *Q*<sub>Weak</sub>: Largest Uncertainties in Precision *Q*<sub>Weak</sub> Result

|                                        | Run 1            |          | Run 2            |          |
|----------------------------------------|------------------|----------|------------------|----------|
| All uncertainties in ppb               | $\delta(A_{PV})$ | fraction | $\delta(A_{PV})$ | fraction |
| Charge Normalization: A <sub>BCM</sub> | 5.1              | 25%      | 2.3              | 17%      |
| Beamline Background: A <sub>BB</sub>   | 5.1              | 25%      | 1.2              | 5%       |
| Beam Asymmetries: A <sub>beam</sub>    | 4.7              | 22%      | 1.2              | 5%       |
| Rescattering bias: A <sub>bias</sub>   | 3.4              | 11%      | 3.4              | 37%      |
| Beam Polarization: P                   | 2.2              | 5%       | < 5%             |          |
| Al target windows: $A_{b1}$            |                  | < 5%     | 1.9              | 12%      |
| Kinematics: $R_{Q^2}$                  |                  | < 5%     | 1.3              | 5%       |
| Total of others                        | 3.4              | 11%      | 2.5              | 20%      |
| Combined in quadrature                 | 10.1             |          | 5.6              |          |

Intercept of  $A_{PV}$  at  $Q^2 \rightarrow 0$  gives weak charge  $(Q^2 = 0.025 \text{ GeV}^2)$  $\overline{A_{PV}} = \frac{A_{PV}}{A_0} = Q_W^p + Q^2 \cdot B(Q^2, \theta = 0)$  with  $A_0 = -\frac{G_F Q^2}{4\pi m^2/2}$ 

Global fit1 of all parity-violating electron scattering with 4% data2

- Fit of parity-violating asymmetry data on H, D,  ${}^{4}$ He,  $Q^{2} < 0.63 \, {
  m GeV}^{2}$
- Free parameters are  $C_{1u}$ ,  $C_{1d}$ , strange charge radius  $\rho_s$  and magnetic moment  $\mu_s$  ( $G_{E,M}^s \propto G_D$ ), and isovector axial form factor  $G_A^{Z,T=1}$ 
  - $Q_W^p(SM) = 0.0710 \pm 0.0007$  (theoretical expectation)
  - $Q_W^{p}(PVES) = 0.064 \pm 0.012$  (global fit of 4% data<sup>2</sup>)
  - After combination with atomic parity-violation on Cs:
    - $C_{1u} = -0.1835 \pm 0.0054$
    - $C_{1d} = 0.3355 \pm 0.0050$

<sup>1</sup>R. Young, R. Carlini, A.W. Thomas, J. Roche, Phys. Rev. Lett. 99, 122003 (2007)
 <sup>2</sup>First Determination of the Weak Charge of the Proton, Phys. Rev. Lett. 111, 141803 (2013)

New global fit of all parity-violating electron scattering with full data set

- Fit of parity-violating asymmetry data on H, D,  ${}^{4}$ He,  $Q^{2} < 0.63 \, {
  m GeV}^{2}$
- = Free parameters were  $C_{1u}$ ,  $C_{1d}$ , strange charge radius  $\rho_s$  and magnetic moment  $\mu_s$  ( $G_{E,M}^s \propto G_D$ ), and isovector axial form factor  $G_A^{Z,T=1}$

$$\begin{array}{rcl} Q^{p}_{W}(PVES)) &=& 0.0719 \pm 0.0045 \\ \sin^{2}\theta_{W} &=& 0.2382 \pm 0.0011 \\ \rho_{s} &=& 0.19 \pm 0.11 \\ \mu_{s} &=& -0.18 \pm 0.15 \\ G^{Z,T=1}_{A} &=& -0.67 \pm 0.33 \end{array}$$

- After combination with atomic parity-violation on Cs:
  - $C_{1u} = -0.1874 \pm 0.0022$
  - $C_{1d} = 0.3389 \pm 0.0025$





#### Using lattice QCD in the extraction

- It is possible to add the lattice strangeness form factor to the global fit.
- $Q_W^p(LQCD)) = 0.0684 \pm 0.0039$



<sup>1</sup>J. Green et al, Phys. Rev. D92, 031501 (2015)

#### Electroweak Box

# **Electroweak Radiative Corrections**

Procedure per Erler et al.<sup>1</sup>

$$Q^p_W = (
ho_{NC} + \Delta_e)(1 - 4\sin^2 heta_W(0) + \Delta'_e) + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z}$$

| Correction to $Q_W^p$               | Uncertainty   |
|-------------------------------------|---------------|
| $\Delta \sin \theta_W(M_Z)$         | ±0.0006       |
| $\Box_{\gamma Z}(6.4\pm0.6)\%$      | $\pm 0.00044$ |
| $\Delta \sin 	heta_W(Q)$ had        | ±0.0003       |
| $\square_{WW}, \square_{ZZ} (pQCD)$ | $\pm 0.0001$  |
| Charge symmetry                     | 0             |
| Total                               | ±0.0008       |

<sup>1</sup>J. Erler, A. Kurylov, M. J. Ramsey-Musolf, Phys. Rev. D 68, 016006 (2003)

Electroweak Box

# **Electroweak Radiative Corrections**

### Discussion of $\Box_{\gamma Z}$

 We use the most recent available treatment by Hall *et al.*<sup>1</sup> (which is the same treatment we used in the publication of the commissioning run in 2013)

= 
$$\Box^V_{\gamma Z} = (5.4 \pm 0.4) imes 10^{-3}$$
 using  $^1$ 

= 
$$\Box^{A}_{\gamma Z} = (-0.7\pm0.2) imes10^{-3}$$
 using  $^2$ 

Q<sup>2</sup> dependence using <sup>3</sup>

#### What if?

- If we use an uncertainty on  $\Box_{\gamma Z}$  of  $\pm 0.0020$  as per Gorchtein *et al.*<sup>1</sup>
- $Q^{p}_{W}(PVES)$  changes from 0.0719  $\pm$  0.0045 to 0.0716  $\pm$  0.0048

<sup>1</sup>Hall, Blunden, Melnitchouk, Thomas, Young, Phys. Lett. B753 (2016) 221-226
 <sup>2</sup>Blunden, Melnitchouk, Thomas, Phys. Rev. Lett. 107, 081801 (2011)
 <sup>3</sup>Gorchtein, Horowitz, Ramsey-Musolf, Phys. Rev. C 84, 015502 (2011)

Electroweak Box

# **Sensitivity to New Physics**

Effective four-point interactions of some higher mass scale<sup>1</sup>

$$\mathcal{L}_{e-q}^{PV} = -\frac{G_F}{\sqrt{2}} \overline{e} \gamma_{\mu} \gamma_5 e \sum_{q} C_{1q} \overline{q} \gamma^{\mu} q + \frac{g^2}{\Lambda^2} \overline{e} \gamma_{\mu} \gamma_5 e \sum_{q} h_q^V \overline{q} \gamma^{\mu} q$$

Limits on new physics energy scale if uncertainty  $\Delta Q_W^p$ 

$$\frac{\Lambda}{g} = \frac{1}{2} \left( \sqrt{2} G_F \Delta Q_W^p \right)^{-1/2}$$

Assuming that we have an arbitrary flavor dependence of the new physics:

$$h_V^u = \cos \theta_h \quad h_V^d = \sin \theta_h$$

<sup>1</sup>J. Erler, A. Kurylov, M. Ramsey-Musolf, PRD 68, 016006 (2003)

Electroweak Box

# **Sensitivity to New Physics**



# **Sensitivity to New Physics**

#### Leptoquarks

- Impact explored in Erler, Kurylov, Ramsey-Musolf, Phys. Rev. D 68, 016006
- Some other data has since been released (HERA), which may affect the opportunities for the Q<sub>Weak</sub> result to distinguish

#### Dark parity-violation

- Davoudiasl, Lee, Marciano, Phys. Rev. D89, 095006 (2014)
- Q<sub>Weak</sub> result rules out some of the allowed region

## **Ancillary Measurements: Borne of Paranoia**

#### Whatever could affect $A_{PV}$ was measured and corrected for

- Each background has asymmetry A<sub>i</sub> and dilution f<sub>i</sub>
- Non-hydrogen scattering: aluminum alloy of target windows
- Non-elastic contributions besides elastic  $ep: N o \Delta$ , Møller
- Non-longitudinal polarization: horizontal, vertical transverse
- Non-electron particles reaching detector:  $\pi$  production
- Particles not originating from target: blocked octants
- Particles not reaching main detectors: superelastic region,
- Priorities driven by weak charge needs until recently
  - First: corrections on  $A_{PV}(p)$  due to  $A_{PV}(AI alloy)$ ,  $B_n(H + AI alloy)$
  - Then: extract  $B_n(H)$ , turn Al alloy into <sup>27</sup>Al for  $A_{PV}(^{27}Al)$
  - Then: corrections due to  $B_n(AI \text{ alloy})$ , extract  $B_n(^{27}AI)$

#### Transverse single spin asymmetries

- Some transverse polarization, slightly broken azimuthal symmetry
- Measure with transversely polarized beam (H or V)
- Parity-conserving T-odd transverse asymmetry of order ppm

$$B_{n} = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} = \frac{2\Im(T^{1\gamma*} \cdot AbsT^{2\gamma})}{|T^{1\gamma}|^{2}} \approx \mathcal{O}(\alpha \frac{m}{E}) \approx \text{ppm}$$

$$T_{f\,i} = \underbrace{T_{f\,i}^{1\gamma}}_{\mathcal{O}(\alpha_{em})} + \underbrace{T_{f\,i}^{2\gamma}}_{\mathcal{O}(\alpha_{em}^{2})} + \cdots$$

#### Azimuthal asymmetries

$$A_{T}(\phi) = \frac{N^{\uparrow}(\phi) - N^{\downarrow}(\phi)}{N^{\uparrow}(\phi) + N^{\downarrow}(\phi)} = B_{n}S\sin(\phi - \phi_{S}) = B_{n}(P_{V}\cos\phi + P_{H}\sin\phi)$$

with  $P_V = S \sin \phi_S$  and  $P_H = S \cos \phi_S$ 

#### Available transverse single spin asymmetries

- Elastic  $\vec{e}p$  in H, C, Al at E = 1.165 GeV
- Inelastic  $ec{e} p 
  ightarrow \Delta$  in H, C, Al at  $E=0.877\,{
  m GeV}$  and  $1.165\,{
  m GeV}$
- Elastic *e* in H at E = 0.877 GeV
- Deep inelastic  $\vec{e}p$  in H at W = 2.5 GeV
- Pion photoproduction in H at E = 3.3 GeV

#### Two hours of data taking in H: $A_T(oct) = A \sin \phi$



Two hours of data taking in V:  $A_T(oct) = A \cos \phi$ 



Electroweak Box

#### Cancellation with slow helicity reversal for H



Cancellation with slow helicity reversal for H



Electroweak Box



- 90 degrees phase difference between H and V as expected
- Not corrected for polarization, backgrounds, acceptance,...

Background corrections (as for main experiment):

$$B_n = R_{total} \frac{\frac{A}{P} - \sum f_i A_i}{1 - \sum f_i}$$

- Measured corrections  $f_i$  and  $A_i$  for aluminum windows,  $N o \Delta$
- =  $R_{total}$  includes radiative corrections, acceptance averaging,  $Q^2$  variation with  $\phi$  in each octant
- Most precise transverse asymmetry in *ep* in hydrogen (50 hours of data):  $B_n = -5.35 \pm 0.07(\text{stat}) \pm 0.15(\text{syst}) \text{ ppm}$
- =  $\langle E 
  angle = 1.155 \pm 0.003 \, {
  m GeV}, \; \langle heta 
  angle = 7.9 \pm 0.3 \, {
  m degrees}$

#### Theoretical models:

- Pasquini, Vanderhaeghen, Phys. Rev. C 70, 045206 (2004)
- Afanasev, Merenkov, Phys. Lett. B 599, 48 (2004)
- Gorchtein, Phys. Rev. C 73, 055201 (2006)



### $Q_{Weak}$ wasn't made for this

- Large energy acceptance of spectrometer (150 MeV at 1.165 GeV)
- Nuclei are hardly ideal with low-lying levels

#### $B_n pprox -11 \, { m ppm}$ in elastic scattering off C

- Analysis complete but no result released yet by collaboration
- Dissertation of Martin McHugh (GWU) is available on UMI and consistent with PREX at  $1\,\sigma$
- Target is 99% <sup>12</sup>C, no significant contaminations
- Correction for contribution from quasi-elastic scattering
- No attempts at separation of nuclear excited states and GDR from elastic scattering
- $B_n(C)$  is a quantity that does not correspond to a purely elastic state

### $B_n \approx [-11, -14]$ ppm in elastic scattering off $^{27}$ Al

- Some figures released by collaboration, no numbers, analysis nearing completion
- Alloy is a mixture with up to 10% other elements
- Attempts to treat quasi-elastic nuclear excited states and GDR more appropriately
- $B_n(^{27}AI)$  will be interpretable as referring to a purely elastic state
- Results to be shown at Fall 2017 DNP meeting by Kurtis Bartlett (W&M)

#### Aluminum azimuthal asymmetry is non-zero (uncorrected data)



- Aluminum alloy with pprox 10% contaminations
- Corrections needed for quasielastic,  $N \rightarrow \Delta$ , nuclear excited states

#### Contaminants

|                                                            |               | Element | % by weight |
|------------------------------------------------------------|---------------|---------|-------------|
| <ul> <li>Working with Chuck Horowit</li> </ul>             | z on          | Al      | 88.70       |
| distorted wave $\sigma$ and $A_{PV}$                       |               | Zn      | 6.3         |
| <ul> <li>Similar approach as Horowitz</li> </ul>           | z, Phys. Rev. | Mg      | 2.7         |
| C89, 045503 (2014)                                         |               | Cu      | 1.8         |
| <ul> <li>Implementation into Q<sub>Weak</sub> I</li> </ul> | Monte Carlo   | Cr      | 0.21        |
| simulations to determine their                             |               | Fe      | 0.12        |
| contributions                                              |               | Si      | 0.10        |
|                                                            |               |         | 99.93       |

### Ancillary Measurements: Transverse Asymmetry on Al

#### Quasi-elastic scattering

- Free nucleon approximation and some heuristics related to isoscalar/isovector impact on sign of asymmetry
- However, free nucleon approximation may not be sufficient per E. Hadjimichael, G. I. Poulis, T. W. Donnelly, Phys. Rev. C 45, 2666 (1992)
- More detailed quasi-elastic implementation per Horowitz, Phys. Rev. C 47, 826 (1992), which his grad student Zidu Lin has adapted to <sup>27</sup>Al

### Ancillary Measurements: Transverse Asymmetry on Al

#### Nuclear excited states

- Fitting nuclear excited state form factors using MIT Bates data
  - R.S. Hicks, A. Hotta, J.B. Flanz, and H. deVries, Phys. Rev. C21, 2177 (1980)
  - P.J Ryan, R.S. Hicks, A. Hotta, J. Dubach, G.A. Peterson, and D.V. Webb, Phys. Rev. C27, 2515 (1983)
- Implementation into Q<sub>Weak</sub> Monte Carlo simulations to determine their contributions

### Ancillary Measurements: Transverse Asymmetry on C, Al

#### Projected uncertainties for $B_n$ for C and AI



B<sub>n</sub> ∝ AQ/Z: Gorchtein, Horowitz, Phys. Rev. C77, 044606 (2008)
 HAPPEX, PREX: Abrahamyan *et al.*, PRL 109, 192501 (2012)

### Ancillary Measurements: Transverse Asymmetry in $N \rightarrow \Delta$

Access to the  $\gamma \ast \Delta \Delta$  form factor



- Large asymmetries in the forward region
- Several possible intermediate states N,  $\Delta$

#### Before any background corrections



#### After background corrections

- Large radiative tail from elastic scattering as dilution with small asymmetry
- $B_n(N 
  ightarrow \Delta) = 43 \pm 16$  at  $\langle heta 
  angle = 8.3$  degrees
- Nuruzzaman, CIPANP2015, arXiv:1510.00449 [nucl-ex]

### Ancillary Measurements: Transverse Asymmetry in $N \rightarrow \Delta$



Includes N, and  $\Delta(1232)$ 

### Ancillary Measurements: Transverse Asymmetry in $N \rightarrow \Delta$



Includes N, Δ(1232), S11(1535), and D13(1520)

Carlson, Pasquini, Pauk, Vanderhaeghen, arXiv:1708.05316 [hep-ph]

**Electroweak Box** 

### Ancillary Measurements: Transverse Asymmetry in Møller



Dixon, Schreiber, Phys. Rev. D 69, 113001 (2004)

# Summary

Determination of the Weak Charge of the Proton

- Most precise parity-violating asymmetry measurement:  $A_{PV} = -226.5 \pm 7.3 (\text{stat}) \pm 5.8 (\text{syst}) \text{ ppb at } \langle Q^2 \rangle = 0.0249 \text{ GeV}^2$
- Weak charge  $Q_W^p(PVES) = 0.0719 \pm 0.0045$  in excellent agreement with  $Q_W^p(SM) = 0.0708 \pm 0.0003$
- Amplitudes above  $8 \cdot 10^{-3} \cdot G_F$  ruled out
- Heavy new physics with  $\Lambda/g < 7.5$  TeV ruled out
- Triad of high precision low energy weak charge measurements now complete

# Summary

Many ancillary measurements for which data is available:

- A<sub>PV</sub> helicity asymmetries:
  - Elastic <sup>27</sup>Al
  - $N \rightarrow \Delta$  (*E* of 1.16 GeV, 0.877 GeV)
  - Near  $W = 2.5 \, {
    m GeV}$  (for  $\Box_{\gamma Z}$ )
  - Pion photoproduction (*E* of 3.3 GeV)

- $B_n$  transverse asymmetries:
  - Elastic *ep*, <sup>27</sup>Al, C
  - $N \to \Delta$
  - Near  $W = 2.5 \,\text{GeV}$
  - Pion photoproduction (*E* of 3.3 GeV)
  - Møller

# **Topics for Discussion**

#### Prioritization of ancillary analysis

- Currently in progress (or preliminary results):
  - $B_n$  for ep
  - $A_{PV}$  for  $N \to \Delta$
  - $A_{PV}$  for <sup>27</sup>Al
  - $B_n$  for <sup>27</sup>Al, C

#### Ask a theorist

- Preference for  $g^2/\Lambda^2$  over  $g^2/4\Lambda^2$ ?
- Limits on leptoquarks?

# **Additional Material**

#### Uncertainties

#### Parity-Violating and Parity-Conserving Nuclear Asymmetries

Tracking Detectors Beam Polarimetry Helicity-Correlated Beam Properties Data Quality

Precision Polarimetry

Atomic Hydrogen Polarimetry



Electroweak Box

# The *Q<sub>Weak</sub>* Experiment: Kinematics in Event Mode

#### Reasons for a tracking system?

- = Determine  $Q^2$ , note:  $A_{meas} \propto Q^2 \cdot \left(Q^p_W + Q^2 \cdot B(Q^2) 
  ight)$
- Main detector light output and Q<sup>2</sup> position dependence
- Contributions from inelastic background events

#### Instrumentation of only two octants

- Horizontal drift chambers for front region (Va Tech)
- Vertical drift chambers for back region (W&M)
- Rotation allows measurements in all eight octants

#### Track reconstruction

- Straight tracks reconstructed in front and back regions
- Front and back partial tracks bridged through magnetic field

# The Q<sub>Weak</sub> Experiment: Improved Beam Polarimetry

#### Requirements on beam polarimetry

- Largest experimental uncertainty in Q<sub>Weak</sub> experiment
- Systematic uncertainty of 1% (on absolute measurements)

#### Upgrade existing Møller polarimeter $(\vec{e} + \vec{e} \rightarrow e + e)$

- Scattering off atomic electrons in magnetized iron foil
- Limited to separate, low current runs ( $I \approx 1 \, \mu {\sf A}$ )

Construction new Compton polarimeter  $(\vec{e} + \vec{\gamma} \rightarrow e + \gamma)$ 

- Compton scattering of electrons on polarized laser beam
- Continuous, non-destructive, high precision measurements

## The *Q<sub>Weak</sub>* Experiment: Improved Beam Polarimetry

#### Compton polarimeter

- Beam: 150 μA at 1.165 GeV
- Chicane: interaction region 57 cm below straight beam line
- Laser system: 532 nm green laser
  - 10 W CW laser with low-gain cavity
- Photons: PbWO<sub>4</sub> scintillator in integrating mode
- Electrons: Diamond strips with 200  $\mu$ m pitch



# Data Quality: Slow Helicity Reversal

### $\lambda/2\text{-plate}$ and Wien filter changes

- Insertable  $\lambda/2\mbox{-plate}$  (IHWP) in injector allows 'analog' flipping helicity frequently
- Wien filter: another way of flipping helicity (several weeks)
- Each 'slug' of 8 hours consists of same helicity conditions



### Helicity-Correlated Beam Properties Are Understood

Measured asymmetry depends on beam position, angle, energy

- Well-known and expected effect for PVES experiments
- "Driven" beam to check sensitivities from "natural" jitter



#### However, Some Beamline Background Correlations Remain

After regression, correlation with background detectors

- Luminosity monitors & spare detector in super-elastic region
- Background asymmetries of up to 20 ppm (that's huge!)



Electroweak Box

# **Beamline Background Correlations Remain**

Hard work by grad students: now understood, under control

- Partially cancels with slow helicity reversal (half-wave plate)
- Likely caused by large asymmetry in small beam halo or tails
- Scattering off the beamline and/or "tungsten plug"



Qualitatively new background for PVES experiments at JLab

- Second regression using asymmetry in background detectors
- Measurements with blocked octants to determine dilution factor  $(f_{b_2}^{MD} = 0.19\%)$

## Data Quality: Understanding the Asymmetry Width

#### Asymmetry width



#### Measurement

- 240 Hz helicity quartets
   (+ -+ or + +-)
- Uncertainty =  $RMS/\sqrt{N}$
- 200 ppm in 4 milliseconds
- < 1 ppm in 5 minutes</p>

#### Battery width



#### Asymmetry width

- Pure counting statistics pprox 200 ppm
- + detector resolution pprox 90 ppm
- + current monitor pprox 50 ppm
- + target boiling pprox 57 ppm
- = observed width pprox 233 ppm

# Data Quality: Helicity-Correlated Beam Properties

#### Natural beam motion

- Measured asymmetry correlated with beam position and angles
- Linear regression:  $A_c = \sum_i \frac{\partial A}{\partial x_i} \Delta x_i$ i = x, y, x', y', E



# Data Quality: Helicity-Correlated Beam Properties

#### Natural beam motion

- Measured asymmetry correlated with beam position and angles
- Linear regression:  $A_c = \sum_i \frac{\partial A}{\partial x_i} \Delta x_i$ i = x, y, x', y', E

Driven beam motion

Deliberate motion



### Helicity-Correlated Beam Properties Are Understood

#### Excellent agreement between natural and driven beam motion

#### Run2 measured asymmetry



- Figure includes about 50% of total dataset for Q<sub>Weak</sub> experiment
- No other corrections applied to this data

#### Lower bound on new physics (95% CL)



#### Constraints from

• Atomic PV:  $\frac{\Lambda}{g} > 0.4 \ TeV$ 

#### Lower bound on new physics (95% CL)



#### Constraints from

- Atomic PV:  $\frac{\Lambda}{g} > 0.4 \ TeV$
- PV electron scattering:  $\frac{\Lambda}{g} > 0.9 \ TeV$

#### Lower bound on new physics (95% CL)



#### Constraints from

- Atomic PV:  $\frac{\Lambda}{g} > 0.4 \ TeV$
- PV electron scattering:  $\frac{\Lambda}{g} > 0.9 \ TeV$
- Projection  $Q_{Weak}$ =  $\frac{\Lambda}{g} > 2 TeV$ = 4% precision

Different experiments sensitive to different extensions



Electroweak Box

The Qweak Experiment

### Parity-Violating Electron Scattering: Quark Couplings

Weak vector charge uud

 $Q_W^p = -2(2C_{1u} + C_{1d})$ 

Early experiments

SLAC and APV



### Parity-Violating Electron Scattering: Quark Couplings

- Weak vector charge *uud*  $Q_{W}^{p} = -2(2C_{1u} + C_{1d})$
- Early experiments
  - SLAC and APV
- Electron scattering
  - HAPPEx, G0
  - PVA4/Mainz
  - SAMPLE/Bates



### Parity-Violating Electron Scattering: Quark Couplings

- Weak vector charge *uud*  $Q_{W}^{p} = -2(2C_{1u} + C_{1d})$
- Early experiments
  - SLAC and APV
- Electron scattering
  - HAPPEx, G0
  - PVA4/Mainz
  - SAMPLE/Bates

 $Q_{Weak}$  experiment



# Precision Electroweak Experiments: JLab 12 GeV

#### MOLLER Experiment

| Source                     | $\Delta A_{PV}$ |
|----------------------------|-----------------|
| Mom. transfer $Q^2$        | 0.5%            |
| Beam polarization          | 0.4%            |
| 2 <sup>nd</sup> order beam | 0.4%            |
| Inelastic <i>ep</i>        | 0.4%            |
| Elastic <i>ep</i>          | 0.3%            |

#### SoLID PV-DIS Experiment

| Source              | $\Delta A_{PV}$ |
|---------------------|-----------------|
| Beam polarization   | 0.4%            |
| Rad. corrections    | 0.3%            |
| Mom. transfer $Q^2$ | 0.5%            |
| Inelastic <i>ep</i> | 0.2%            |
| Statistics          | 0.3%            |

Precision beam polarimetry is crucial to these experiments.

# **Precision Electroweak Experiments: Polarimetry**

#### Compton Polarimetry

- $ec{e}ec{ au}
  ightarrow e\gamma$  (polarized laser)
- Detection  $e \; {\rm and}/{\rm or} \; \gamma$
- Only when beam energy above few hundred MeV
- High photon polarization but low asymmetry
- Total systematics  $\sim 1\%$ 
  - laser polarization
  - detector linearity

#### Møller Polarimetry

- $\vec{e}\vec{e} 
  ightarrow ee$  (magnetized Fe)
- Low current because temperature induces demagnetization
- High asymmetry but low target polarization
- Levchuk effect: scattering off internal shell electrons
- Intermittent measurements at different beam conditions
- Total systematics  $\sim 1\%$

# **Atomic Hydrogen Polarimetry**

#### New polarimetry concept<sup>1</sup>

- 300 mK cold atomic H
- 8 T solenoid trap
- =  $3 \cdot 10^{16} \text{ atoms/cm}^2$
- $3 \cdot 10^{15-17} \text{ atoms/cm}^3$
- 100% polarization of e

#### Advantages

- High beam currents
- No Levchuk effect
- Non-invasive, continuous



30K

0.3K

beam

Solenoid 8T

Storage Cell

#### The Qweak Experiment

### Atomic Hydrogen Polarimetry: 100% Polarization of e

#### Hyperfine Splitting in Magnetic Field

- Energy splitting of  $\Delta E = 2\mu B$ :  $\uparrow / \downarrow = \exp(-\Delta E/kT) \approx 10^{-14}$
- Low energy states with |s<sub>e</sub>s<sub>p</sub>>:

$$\begin{array}{l} |d\rangle = |\uparrow\uparrow\rangle \\ |c\rangle = \cos\theta \left|\uparrow\downarrow\rangle + \sin\theta \left|\downarrow\uparrow\rangle \\ |b\rangle = \left|\downarrow\downarrow\rangle \right\rangle \end{array}$$

$$|a
angle = \cos heta \left|\downarrow\Uparrow
ight
angle - \sin heta \left|\uparrow\Downarrow
ight
angle$$

with sin  $\theta \approx 0.00035$ 

• 
$$P_e(\downarrow) \approx 1$$
 with only  $10^5$  dilution from  $|\uparrow\downarrow\rangle$  in  $|a\rangle$  at  $B = 8$  T

= 
$$P_p(\Uparrow) pprox 0.06$$
 because 53%  $|a
angle$  and 47%  $|b
angle$ 



Force  $\vec{\nabla}(-\vec{\mu} \cdot \vec{B})$  will pull  $|a\rangle$  and  $|b\rangle$  into field

### Atomic Hydrogen Polarimetry: Expected Contaminations

#### Without beam

- $\,$  Recombined molecular hydrogen suppressed by coating of cell with superfluid He,  $\sim 10^{-5}$
- Residual gasses, can be measured with beam to < 0.1%

#### With 100 $\mu \rm A$ beam

- 497 MHz RF depolarization for 200 GHz  $|a\rangle \rightarrow |c\rangle$  transition, tuning of field to avoid resonances, uncertainty  $\sim 2 \cdot 10^{-4}$
- = lon-electron contamination: builds up at 20%/s in beam region, cleaning with  $\vec{E}$  field of  $\sim 1 \,\text{V/cm}$ , uncertainty  $\sim 10^{-5}$

### Atomic Hydrogen Polarimetry: Projected Uncertainties

#### Projected Systematic Uncertainties $\Delta P_e$ in Møller polarimetry

| Source              | Fe-foil | Hydrogen |
|---------------------|---------|----------|
| Target polarization | 0.63%   | 0.01%    |
| Analyzing power     | 0.30%   | 0.10%    |
| Levchuk effect      | 0.50%   | 0.00%    |
| Deadtime            | 0.30%   | 0.10%    |
| Background          | 0.30%   | 0.10%    |
| Other               | 0.30%   | 0.00%    |
| Unknown unknowns    | 0.00%   | 0.30%(?) |
| Total               | 1.0%    | 0.35%    |

#### Atomic Hydrogen Polarimetry: Collaboration with Mainz

#### P2 Experiment in Mainz: Weak Charge of the Proton

- "*Q<sub>Weak</sub>* experiment" with improved statistical precision
- Dedicated 200 MeV accelerator MESA under construction
- Required precision of electron beam polarimetry < 0.5%
- Strong motivation for collaboration on a short timescale (installation in 2017)



Parity-Violating Electron Scattering: Running of Weak Mixing Angle

Running of  $\sin^2 \theta_W \left( Q_W^p = 1 - 4 \sin^2 \theta_W \right)$ 

- Higher order loop diagrams
- $\sin^2 \theta_W$  varies with  $Q^2$





#### yZ Box Corrections near 1.16 GeV



In 2009, Gorchtein and Horowitz showed the vector hadronic contribution to be significant and energy dependent.

This soon led to more refined calculations with corrections of ~8% and error bars ranging from  $\pm 1.1\%$  to  $\pm 2.8\%$ .

It will probably also spark a refit of the global PVES database used to constrain  $G_{\text{E}}^{s}$ ,  $G_{\text{M}}^{s}$ ,  $G_{\text{A}}$ .



#### yZ Box Corrections near 1.16 GeV A Partial Bibliography

| PV Amplitude                                        | Authors | Reference                                                                     |
|-----------------------------------------------------|---------|-------------------------------------------------------------------------------|
| A <sup>e</sup> xV <sup>p</sup><br>(vanishes as E→0) | GH      | Gorchtein & Horowitz,<br>PRL <b>102</b> , 091806 (2009)                       |
|                                                     | SBMT    | Sibirtsev, Blunden, Melnitchouk, andThomas,<br>PRD <b>82</b> , 013011 (2010)  |
|                                                     | RC      | Rislow & Carlson,<br>PRD <b>83</b> , 113007 (2011)                            |
|                                                     | GHR-M   | Gorchtein, Horowitz, and Ramsey-Musolf,<br>PRC <b>84</b> , 015502 (2011)      |
| V°×AP<br>(finite as E→0)                            | MS      | Marciano and Sirlin,<br>PRD <b>27</b> , 552 (1983), PRD <b>29</b> , 75 (1984) |
|                                                     | EKR-M   | Erler, Kurylov, and Ramsey-Musolf,<br>PRD <b>68</b> , 016006 (2003)           |
|                                                     | BMT     | Blunden, Melnitchouk, and Thomas,<br>PRL <b>107</b> , 081801 (2011)           |

# The Q<sub>Weak</sub> Experiment: Main Detector

#### Low noise electronics

- Event rate: 800 MHz/PMT
- Asymmetry of only 0.2 ppm
- Low noise electronics (TRIUMF)



#### I-V Preamplifier



#### Ext NIM Gate Status | EDs 8 inputs VME Access Ext NIM Clock Ext Clock Enb Ext Gate Enb Analog Filters VME Module ADC Select Switches FPGA Prog/ Debug Ports DC-DC Converter FPGA

18-bit 500 kHz sampling ADC

#### The Qweak Experiment

#### Electroweak Box

# The *Q<sub>Weak</sub>* Experiment: Systematic Uncertainties

#### Reminder: weak vector charges

- Proton weak charge  $Q_W^p \approx -0.072$
- Neutron weak charge  $Q_W^n = -1$

#### Sources of neutron scattering

- Al target windows
- Secondary collimator events
- Small number of events, but huge false PV asymmetry

#### Al target windows



### **Electroweak Interaction: Running of Weak Mixing Angle**

#### Atomic parity-violation on <sup>133</sup>Cs

- Porsev, Beloy, Derevianko<sup>1</sup>: Updated calculations in many-body atomic theory
- Experiment:  $Q_W(^{133}Cs) = -73.25 \pm 0.29 \pm 0.20$
- Standard Model:  $Q_W(^{133}Cs) = -73.16 \pm 0.03$

#### NuTeV anomaly

- Reported  $3\sigma$  deviation from Standard Model
- Erler, Langacker: strange quark PDFs
- Londergan, Thomas<sup>2</sup>: charge symmetry violation,  $m_u \neq m_d$
- Cloet, Bentz, Thomas<sup>3</sup>: in-medium modifications to PDFs, isovector EMC-type effect

<sup>1</sup>Phys. Rev. Lett. 102 (2009) 181601
 <sup>2</sup>Phys. Rev. D67 (2003) 111901
 <sup>3</sup>Phys. Lett. B693 (2010) 462-466

# **NuTeV Nuclear Correction**

#### Isovector EMC effect<sup>1</sup> affects NuTeV point<sup>2</sup>



<sup>1</sup>I. Cloët, W. Bentz, A. M. Thomas, Phys. Rev. Lett. 102, 252301 (2009) <sup>2</sup>W. Bentz, Phys. Lett. B693, 462-466 (2010)

Electroweak Box

The Qweak Experiment

# **NuTeV Nuclear Correction**

#### Isovector EMC effect<sup>1</sup> affects NuTeV point<sup>2</sup>



<sup>1</sup>I. Cloët, W. Bentz, A. M. Thomas, Phys. Rev. Lett. 102, 252301 (2009) <sup>2</sup>W. Bentz, Phys. Lett. B693, 462-466 (2010)

Electroweak Box

The Qweak Experiment