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Polarized neutron optics tests of T invariance: summary of the key points
Statistical reach at MW-class spallation neutron sources

How to prove that systematics are under control?



T violation in Neutron Optics

e T-—oddtermin FORWARD scattering amplitude (a null test, like
EDMs) with polarized n beam and polarized nuclear target

—

* P-odd/T-odd (most interesting) o, - (k; x I)

 Amplified on select P-wave epithermal neutron resonances by
~5-6 orders of magnitude

» Estimates of stat sensitivity at SNS/JSNS look very interesting:

Existing technology/sources->Acpt/ACp~1E-5

* The nuclei of interest, resonance energies, and P-odd
asymmetry amplifications are measured

Nucleus Resonance Energy PV asymmetry

131xe 3.2 eV 0.043
1391 4 0.748 eV 0.096
81Br 0.88 eV 0.02




So why has this experiment never been
done?

How to design experiment that can realize “null test” theorem?

How to get enough polarized eV neutrons on resonance?

II)

How best to characterize/eliminate “non-optica
effects?

systematic

Russian/Japanese/US groups looked into it in ~1990s:
“death by a thousand cuts”

Now the situation is greatly improved



“Motion-Reversed” Experiment (sys error free in the n optics limit)
F=Ffo+ fiom I+ foom - kn+ faom - (kn x I) Want fi<<f,,f,
b e
3 3
l} He Blxe polarized L He
K Polarizer Target Detector
n

\A_/

® - "0“

N _ 3 N 3
— | '’'Xe polarized He | o He
Kk, Target Polarizer Detector

Bowman/Gudkov, arXiv:1407.7004



Experiment Components

Intense Epithermal (¥eV) neutron beam
Polarized eV neutrons
Polarized nuclear target

Ability to flip k,,. o,. I and B (mechanical
rotation of apparatus, B shielding)

Current mode eV neutron detector



So who has ever done a precision
polarized neutron experiment on a
rotating platform?

Norman Ramsey

Neutron EDM experiment at ORNL in ~1970’s (before UCNs)

Apparatus was periodically rotated on a navy surplus gun turrett



What is the most sensitive polarized
neutron transmission experiment
conducted with a “slow” flip to isolate
an asymmetry?



Parity Violation in Neutron Spin Rotation

Apparatus measures the horizontal component of neutron spin generated in the
liquid target starting from a vertically-polarized beam
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Moving liquid helium before and after an internal precession coil was the “flip” needed to
isolate the parity-odd amplitude. This took a couple of minutes



Neutron Spin Rotation in n+4He
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Start Time of Run

Transversely polarized neutrons corkscrew due
to weak interaction

bope= [+1.7 £ 9.1 (stat) +1.4 (sys)] x 107 rad/m

W. M. Snow et al., Phys. Rev. C83, 022501(R) (2011).



Neutron source flux with time. Only within last decade
do we have ~MW-class short-pulsed spallation sources
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SNS Site Overlay
$1.4B--1GeV protons at 1.4 MW, started in 2007.
Short (~1 usec) pulse— mainly for high TOF resolution



Relative Flux

Why is a “short-pulsed” spallation
neutron source important?

S-wave

resonance

ES

Ep
Maxwell-Boltzmann o, (E) = [®, /T32] E exp (-E/T)

E

P-violation is enhanced in
p-wave resonance
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(from Hiro’s talk)

resonance energy ~eV,
resonance width
~“meVs

Short pulse-> resonance can
be resolved using neutron
time-of-flight

The rest of the neutrons in
the beam can be used to
characterize possible
systematic effects !

>~10% more of these “off-
resonance” neutrons



ESS Slow Neutron Peak Brilliance
(from website)
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Pulsed, but wide pulse (“msec) optimized completely for meV neutrons, not eV neutrons



Scattering Function S( Q ,)

eDepends only on structure and dynamics of atoms in sample

*The scattering from each individual atom is a spherical wave

*The scattering from a collection of atoms is a huge sum of

waves from each atom, with constructive and destructive interference giving
information on space and time arrangement of the atoms
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Elastic vs. Inelastic Scattering

R Scattering triangle:
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Use neutron scattering to evaulate any in-beam
nonforward scatttering systematics!

momentum = ik energy = (hk)%(2m) Er kr
k=27t/\
Ei ki Q=ki-kt
P5Sample o = Ei - Bt

At eV neutron energy: neutron momenta are large, g is small if it stays inside the beam

At meV neutron energy: neutron momenta are smaller, q is the same for any nonforward
mode-> the scattering angle will increase and this neutron will appear out of beam

With a downstream neutron detector: can MEASURE any nonforward events present
In the eV beam using the (much more intense) meV neutrons that come later in time!

ALSO: for transverse neutron spin, P-even left-right asymmetries are very small at eV neutron
energies (<~1E-3)->left/right beam motion effects negligible



Polarized 3He Neutron Spin Filters

(Indiana, Hamilton, NIST, Wisconsin)
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Uniform polarized neutron beam phase space from
absorption in polarized 3He gas

R&D funded by DOE materials science for ~15 years

Educated the people now implementing this technology



Cell name

> 80% 3He polarization for neutron spin fiters

)

Vv, T

cm?

T,, h
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Burgund 4 895 4.76 NA NA 8.507+0.060 ANDR
Maveric 615 4.33 NA NA 8.878+0.060 ANDR
Burgundy @i‘1 895 6.61 203 0.140 8.507+0.071 NGO6A
Maverick—"4 615 5.76 208 0.177 8.878+0.071 NG6A
Syrah 6.2 790 4.03 NA NA 13.16+0.16 BT-7 TAS
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Volume Bvagg Grating
(VBG)

Volume Bragg gratings are
bulk slabs of photosensitive
glass that contains Bragg
planes with varying indices
of refraction. They work as a
frequency-selective feedback
element. Chirped VBGs
indicate variable grating
periods



3He NSF applications at the NCNR (W. Chen)
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* Polarized 3He neutron spin filters becoming “routine” at neutron scattering
facilities



3He - Operational - Under development & construction (T. Tong)
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The world’s most intense pulsed, accelerator-based neutron source
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Polarized neutron RF spin flipper at
Pulsed Neutron Source

* RFfield oscillating along the beam at Larmor frequency of neutron in the holding
field

* Precession angle —
spin flip all neutrons 0 = my|Bry|At

 Dump the current into a dummy load when spin flipper is off to avoid false signal

so we can ramp the amplitude to 1/tof to

e spin flipper efficiency of ~99%

holding field

C s,

N Brr

Polarized beam phase space unchanged! Can be chosen on a pulse-by-pulse basis



Other Neutron Facilities can Characterize
Polarized Target Systematics

ILL and FRM “hot” neutron sources (~2000K graphite “heaters” in reactor)
Possess eV neutrons, polarized 3He neutron polarizers, cryogenics,...
Designed to measure magnetic structure/dynamics

We can use it to torture our polarized target

Polarized neutron imaging of internal magnetic fields now in operation

measure the internal magnetic fields/polarization of target



Conclusions

On-resonance T violation in epithermal neutron resonances can now be measured
with interesting sensitivity

MW-class, short-pulsed spallation neutron sources (SNS, JPARC) are beautiful
sources to use for the experiment: neutron time-of-flight can be used to great
advantage to characterize possible systematic errors, especially to “dig out” any
non-forward scattering in the transmitted beam

Individual components/operation modes for the experiment have been realized:
hardest part is the polarized target



