P-odd/T-odd Tests using Polarized Neutron Optics

Indiana University/CEEM IU Center for Spacetime Symmetries

Mike Snow

Polarized neutron optics tests of T invariance: summary of the key points

Statistical reach at MW-class spallation neutron sources

How to prove that systematics are under control?

T violation in Neutron Optics

- T odd term in FORWARD scattering amplitude (a null test, like EDMs) with polarized n beam and polarized nuclear target
- P-odd/T-odd (most interesting) $\vec{\sigma_n} \cdot (\vec{k_n} \times \vec{I})$
- Amplified on select P-wave epithermal neutron resonances by ~5-6 orders of magnitude
- Estimates of stat sensitivity at SNS/JSNS look very interesting: Existing technology/sources-> $\Delta \sigma_{\rm PT} / \Delta \sigma_{\rm P} \sim 1E-5$
- The nuclei of interest, resonance energies, and P-odd asymmetry amplifications are measured

Nucleus	Resonance Energy	PV asymmetry
¹³¹ Xe	3.2 eV	0.043
¹³⁹ La	0.748 eV	0.096
⁸¹ Br	0.88 eV	0.02

So why has this experiment never been done?

How to design experiment that can realize "null test" theorem?

How to get enough polarized eV neutrons on resonance?

How best to characterize/eliminate "non-optical" systematic effects?

Russian/Japanese/US groups looked into it in ~1990s: "death by a thousand cuts"

Now the situation is greatly improved

"Motion-Reversed" Experiment (sys error free in the n optics limit)

Bowman/Gudkov, arXiv:1407.7004

Experiment Components

- Intense Epithermal (~eV) neutron beam
- Polarized eV neutrons
- Polarized nuclear target
- Ability to flip $\vec{k_n}, \vec{\sigma_n}, \vec{I}$ and B (mechanical rotation of apparatus, B shielding)
- Current mode eV neutron detector

So who has ever done a precision polarized neutron experiment on a rotating platform?

Norman Ramsey

Neutron EDM experiment at ORNL in ~1970's (before UCNs)

Apparatus was periodically rotated on a navy surplus gun turrett

What is the most sensitive polarized neutron transmission experiment conducted with a "slow" flip to isolate an asymmetry?

Parity Violation in Neutron Spin Rotation

Apparatus measures the horizontal component of neutron spin generated in the liquid target starting from a vertically-polarized beam

Moving liquid helium before and after an internal precession coil was the "flip" needed to isolate the parity-odd amplitude. This took a couple of minutes

Neutron Spin Rotation in n+4He

Neutron source flux with time. Only within last decade do we have ~MW-class short-pulsed spallation sources

R. Eichler, PSI

The Spallation Neutron Source

SNS Site Overlay

- \$1.4B--1GeV protons at 1.4 MW, started in 2007.
- Short (~1 usec) pulse- mainly for high TOF resolution

Why is a "short-pulsed" spallation neutron source important?

(from Hiro's talk)

resonance energy ~eV, resonance width ~meVs

Short pulse-> resonance can be resolved using neutron time-of-flight

The rest of the neutrons in the beam can be used to characterize possible systematic effects !

>~10⁴ more of these "offresonance" neutrons

ESS Slow Neutron Peak Brilliance (from website)

Pulsed, but wide pulse (~msec) optimized completely for meV neutrons, not eV neutrons

Scattering Function S(\vec{Q} , ω)

- Depends only on structure and dynamics of atoms in sample
- •The scattering from each individual atom is a spherical wave
- •The scattering from a collection of atoms is a huge sum of waves from each atom, with constructive and destructive interference giving information on space and time arrangement of the atoms

Elastic vs. Inelastic Scattering

Probes structures by interference of neutrons scattered from them

Probes dynamics: energy transferred from excitations in the sample

At eV neutron energy: neutron momenta are large, q is small if it stays inside the beam

At meV neutron energy: neutron momenta are smaller, q is the same for any nonforward mode-> the scattering angle will increase and this neutron will appear out of beam

With a downstream neutron detector: can MEASURE any nonforward events present In the eV beam using the (much more intense) meV neutrons that come later in time!

ALSO: for transverse neutron spin, P-even left-right asymmetries are very small at eV neutron energies (<~1E-3)->left/right beam motion effects negligible

Polarized ³He Neutron Spin Filters

(Indiana, Hamilton, NIST, Wisconsin)

Uniform polarized neutron beam phase space from absorption in polarized 3He gas

R&D funded by DOE materials science for ~15 years

Educated the people now implementing this technology

> 80% ³He polarization for neutron spin fiters

Cell name	D	V, cm ³	T _{up} , h	T ₁ , h	X	P _{He}	nl, bar-cm	instrument
Burgundy	กสำด	895	4.76	NA	NA	0.853±0.012	8.507±0.060	ANDR
Maverick	NV	615	4.33	NA	NA	0.821±0.011	8.878±0.060	ANDR
Burgundy	ML9) 895	6.61	203	0.140	0.851±0.007	8.507±0.071	NG6A
Maverick	V4174	615	5.76	208	0.177	0.826±0.007	8.878±0.071	NG6A
Syrah	6.2	790	4.03	NA	NA	0.835±0.023	13.16±0.16	BT-7 TAS

Confirmed with pol. n's

Volume Bragg gratings are bulk slabs of photosensitive glass that contains Bragg planes with varying indices of refraction. They work as a frequency-selective feedback element. Chirped VBGs indicate variable grating periods

• Polarized 3He neutron spin filters becoming "routine" at neutron scattering facilities

3He

Under development & construction (T. Tong)

Spallation Neutron Source at Oak Ridge National Laboratory

The world's most intense pulsed, accelerator-based neutron source

G00400P/gim

Polarized neutron RF spin flipper at Pulsed Neutron Source

- RF field oscillating along the beam at Larmor frequency of neutron in the holding field
- Precession angle spin flip all neutrons $\theta = \pi \gamma |\overrightarrow{B}_{rf}| \Delta t$ so we can ramp the amplitude to 1/tof to
- Dump the current into a dummy load when spin flipper is off to avoid false signal
- spin flipper efficiency of ~99%

Polarized beam phase space unchanged! Can be chosen on a pulse-by-pulse basis

Other Neutron Facilities can Characterize Polarized Target Systematics

ILL and FRM "hot" neutron sources (~2000K graphite "heaters" in reactor)

Possess eV neutrons, polarized 3He neutron polarizers, cryogenics,...

Designed to measure magnetic structure/dynamics

We can use it to torture our polarized target

Polarized neutron imaging of internal magnetic fields now in operation

measure the internal magnetic fields/polarization of target

Conclusions

On-resonance T violation in epithermal neutron resonances can now be measured with interesting sensitivity

MW-class, short-pulsed spallation neutron sources (SNS, JPARC) are beautiful sources to use for the experiment: neutron time-of-flight can be used to great advantage to characterize possible systematic errors, especially to "dig out" any non-forward scattering in the transmitted beam

Individual components/operation modes for the experiment have been realized: hardest part is the polarized target