Flooded Dark Matter and S Level Rise

Flooded Dark Matter and S Level Rise
Jakub Scholtz, Harvard
Date and time: Tue, Nov 03, 2015 - 2:30pm
Location: LGRT 419B
Category: ACFI Seminar
Abstract:
Most dark matter (DM) models set the DM relic density by some interaction with Standard Model particles. Such models generally assume the existence of Standard Model particles early on, with the DM relic density a later consequence of those interactions. Perhaps a more compelling assumption is that DM is not part of the Standard Model sector and a population of DM too is generated at the end of inflation. This democratic assumption does not necessarily provide a natural value for the DM relic density, and superficially leads to too much entropy in the dark sector. We address the latter issue by the late decay of heavy particles produced at early times, associating the DM relic density with the lifetime of a long-lived state. We ask what it would take for this scenario to be compatible with observations in what we call Flooded Dark Matter (FDM) and discuss several interesting consequences. One is that DM can be very light and furthermore, light DM is in some sense the most natural scenario in FDM as it is compatible with larger couplings of the decaying particle. Moreover, the decay of the field with the smallest coupling and hence the longest lifetime dominates the entropy and possibly the matter content of the Universe, a principle we refer to as 'Maximum Baroqueness'. We also show that the dark sector should be colder than the ordinary sector, relaxing the free-streaming constraints on light DM. We will discuss the implications for the core-cusp problem in a follow-up paper. FDM also has interesting baryogenesis implications. One possibility is that both DM and baryon asymmetries are simultaneously diluted by a late entropy dump. Alternatively, FDM is compatible with an elegant non-thermal leptogenesis implementation in which decays of a heavy RH neutrino lead to late time reheating of the Standard Model and provide suitable conditions for creation of a lepton asymmetry.