Graphene and graphene-type systems

Stability of Dirac liquids with strong Coulomb interaction

Dirac liquid is linear in momentum low-energy electronic spectrum (semimetallic state). Is it stable against the strong long-range part of Coulomb interaction? To suppress short-range correlations consider flat-top potential at short-range, \(V(r < 2a) = U(2a) \), and Coulomb otherwise.

Dimensionless parameter \(\epsilon_0 = e^2 f(0) / \epsilon F(0) = \sqrt{a} / (2 \pi a_0) \) (where \(a_0 \) is about 2.2 in suspended graphene).

Introduce effective coupling constant \(\alpha_{c} \alpha_{p} \), where \(\alpha_{c} \) is the Fermi velocity. 2d Dirac fermions cannot screen the Coulomb part and quasiparticle properties get strongly renormalized.

Renormalization of \(\alpha_{l} \)

The scale \(\alpha_{l} \) renormalizes to 0:

- 1st-order: \(\alpha_{c} \) renormalizes to 0
- 2nd-order: \(c \alpha_{l} > 0.8 \) RG flows towards strong coupling

A: With increasing the system size, the effective coupling \(\alpha_{l} \) always flows towards 0; i.e., the 2d Dirac liquid is an asymptotically free T=0 state (I. Tupitsyn and N. Prokof'ev, PRL 118, 026403 (2017)).

BDMC

The BDMC result in higher orders (BDMCn; BDMC1) converges to the DMRG answer.

- 2nd-order in \(\alpha_{l} = \alpha_{p} \)
- High-order expansion is required.

Jellium model for electrons

- Known issue with the GW approximation: Incorrect prediction of dielectric response, \(\varepsilon(\omega) = 1 - (4\pi e^2 / \hbar^2) \) \(\Pi(k, \omega) \).
- Key finding: At small momenta the polarization function is orders of magnitude larger than expected from \(n^2 / m^{1/2} \) and \(4\pi e^2 / \hbar^2 \) \(\Pi(k, \omega) \) tends to diverge. The problem can be traced back to the fact that the GW approximation does not respect the dynamic particle number conservation law, implying that \(\Pi(k=0, \omega) \) should be constant (\(\Pi = \gamma (1 - V(k)) \) and \(\gamma (k=0, \omega) = (\varepsilon(0)) \n(0) \)).
- Workaround: Enforce physical behavior by performing simple transformation before calculating the dielectric response: \(\Pi(k, \omega) \rightarrow 1 \Pi(k, \omega) - \[1(0, \omega) + 1(0, 0) n_\omega \] + \) in higher orders calculations the correction term vanishes.

Hydrogen chain

- Equation of state in TDL, STO 6-31G basis

The BDMC result in higher orders (BDMC; BDMC \(= \) sc-GW(\(H^0 \)) \(\rightarrow \) DMRG answer.

- The difference between the two sc-GW answers can be used as an estimate of the method accuracy (see Figure).

Full interaction tensor and cut-offs: Dependence of interactions on two site differences \(u=(i, j) \) and \(v=(k, l) \) can be radially simplified \(u=0 \) and \(v=0 \) represent the “density-dipole” part of the interaction potential. We found that energies per atom obtained with unrestricted summation over \((u, v) \) (in the Dyson equation for screened effective interaction \(W \)) and with \(u^2 + v^2 = 2 \) coincide at the level of \(\sim 10^3 \) even at the smallest values of lattice constant \(R \).

- Rigorous correction to sc-GW(\(H^0 \)) is needed.